Surface Chemistry and Interface Formation during the Atomic Layer Deposition of Alumina from Trimethylaluminum and Water on Indium Phosphide

The surface chemistry and the interface formation during the initial stages of the atomic layer deposition (ALD) of Al2O3 from trimethylaluminum (TMA) and H2O on InP(100) were studied by synchrotron radiation photoemission spectroscopy and scanning tunneling microscopy. The effect of the ex situ sur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of Materials 2013-02, Vol.25 (7), p.1078-1091
Hauptverfasser: Adelmann, Christoph, Cuypers, Daniel, Tallarida, Massimo, Rodriguez, Leonard N.J, De Clercq, Astrid, Friedrich, Daniel, Conard, Thierry, Delabie, Annelies, Seo, Jin Won, Locquet, Jean-Pierre, De Gendt, Stefan, Schmeisser, Dieter, Van Elshocht, Sven, Caymax, Matty
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1091
container_issue 7
container_start_page 1078
container_title Chemistry of Materials
container_volume 25
creator Adelmann, Christoph
Cuypers, Daniel
Tallarida, Massimo
Rodriguez, Leonard N.J
De Clercq, Astrid
Friedrich, Daniel
Conard, Thierry
Delabie, Annelies
Seo, Jin Won
Locquet, Jean-Pierre
De Gendt, Stefan
Schmeisser, Dieter
Van Elshocht, Sven
Caymax, Matty
description The surface chemistry and the interface formation during the initial stages of the atomic layer deposition (ALD) of Al2O3 from trimethylaluminum (TMA) and H2O on InP(100) were studied by synchrotron radiation photoemission spectroscopy and scanning tunneling microscopy. The effect of the ex situ surface cleaning by either H2SO4 or (NH4)(2)S was examined. It is shown that the native oxide on the InP surface consisted mainly of indium hydrogen phosphates with a P enrichment at the interface with InP. After a (NH4)(2)S treatment, S was present on the surface as a sulfide in both surface and subsurface sites. Exposure to TMA led to the formation of a thin AlPO4 layer, irrespective of the surface cleaning. The surface Fermi level of p-type InP was found to be pinned close to midgap after H2SO4 cleaning and moved only slightly further toward the conduction band edge upon TMA exposure, indicating that the AlPO4/InP interface was rather defective. (NH4)(2)S passivation led to a Fermi level position of p-type InP close to the conduction band edge. Hence, the InP surface was weakly inverted, which can be attributed to surface doping by S donors. TMA exposure was found to remove surface S, which was accompanied by a shift of the Fermi level to midgap, consistent with the removal of (part of) the S donors in combination with a defective AlPO4/InP interface. Further TMA/H2O AID did not lead to any detectable changes of the AlPO4/InP interface and suggested simple overgrowth with Al2O3.
format Article
fullrecord <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_402724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_402724</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_4027243</originalsourceid><addsrcrecordid>eNqNjs1qwkAURmfRQq3tO9xdF0WY_GjiUmxFoQvBQJdhcG46t83MhPkp5h18aEP0AVx9cDgcvgc24eWymOXFfPHEnr3_5TxJeFpO2PkQXSOOCGuFmnxwPQgjYWcCXvnGOi0CWQMyOjI_EBTCKlhNR_gSPTr4wM56GhXbwKqNmoyAxlkNlSONQfWtGGnUY_xbDHEY9J2RNLC9sr5TJPGFPTai9fh62yl723xW6-3sL7YY_9HU0nfDqTpJs3y-KMplnfO0SPNsyt7vM-twCtn93Qsg7WNd</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Surface Chemistry and Interface Formation during the Atomic Layer Deposition of Alumina from Trimethylaluminum and Water on Indium Phosphide</title><source>Lirias (KU Leuven Association)</source><source>ACS Publications</source><creator>Adelmann, Christoph ; Cuypers, Daniel ; Tallarida, Massimo ; Rodriguez, Leonard N.J ; De Clercq, Astrid ; Friedrich, Daniel ; Conard, Thierry ; Delabie, Annelies ; Seo, Jin Won ; Locquet, Jean-Pierre ; De Gendt, Stefan ; Schmeisser, Dieter ; Van Elshocht, Sven ; Caymax, Matty</creator><creatorcontrib>Adelmann, Christoph ; Cuypers, Daniel ; Tallarida, Massimo ; Rodriguez, Leonard N.J ; De Clercq, Astrid ; Friedrich, Daniel ; Conard, Thierry ; Delabie, Annelies ; Seo, Jin Won ; Locquet, Jean-Pierre ; De Gendt, Stefan ; Schmeisser, Dieter ; Van Elshocht, Sven ; Caymax, Matty</creatorcontrib><description>The surface chemistry and the interface formation during the initial stages of the atomic layer deposition (ALD) of Al2O3 from trimethylaluminum (TMA) and H2O on InP(100) were studied by synchrotron radiation photoemission spectroscopy and scanning tunneling microscopy. The effect of the ex situ surface cleaning by either H2SO4 or (NH4)(2)S was examined. It is shown that the native oxide on the InP surface consisted mainly of indium hydrogen phosphates with a P enrichment at the interface with InP. After a (NH4)(2)S treatment, S was present on the surface as a sulfide in both surface and subsurface sites. Exposure to TMA led to the formation of a thin AlPO4 layer, irrespective of the surface cleaning. The surface Fermi level of p-type InP was found to be pinned close to midgap after H2SO4 cleaning and moved only slightly further toward the conduction band edge upon TMA exposure, indicating that the AlPO4/InP interface was rather defective. (NH4)(2)S passivation led to a Fermi level position of p-type InP close to the conduction band edge. Hence, the InP surface was weakly inverted, which can be attributed to surface doping by S donors. TMA exposure was found to remove surface S, which was accompanied by a shift of the Fermi level to midgap, consistent with the removal of (part of) the S donors in combination with a defective AlPO4/InP interface. Further TMA/H2O AID did not lead to any detectable changes of the AlPO4/InP interface and suggested simple overgrowth with Al2O3.</description><identifier>ISSN: 0897-4756</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><ispartof>Chemistry of Materials, 2013-02, Vol.25 (7), p.1078-1091</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,316,782,786,27867</link.rule.ids></links><search><creatorcontrib>Adelmann, Christoph</creatorcontrib><creatorcontrib>Cuypers, Daniel</creatorcontrib><creatorcontrib>Tallarida, Massimo</creatorcontrib><creatorcontrib>Rodriguez, Leonard N.J</creatorcontrib><creatorcontrib>De Clercq, Astrid</creatorcontrib><creatorcontrib>Friedrich, Daniel</creatorcontrib><creatorcontrib>Conard, Thierry</creatorcontrib><creatorcontrib>Delabie, Annelies</creatorcontrib><creatorcontrib>Seo, Jin Won</creatorcontrib><creatorcontrib>Locquet, Jean-Pierre</creatorcontrib><creatorcontrib>De Gendt, Stefan</creatorcontrib><creatorcontrib>Schmeisser, Dieter</creatorcontrib><creatorcontrib>Van Elshocht, Sven</creatorcontrib><creatorcontrib>Caymax, Matty</creatorcontrib><title>Surface Chemistry and Interface Formation during the Atomic Layer Deposition of Alumina from Trimethylaluminum and Water on Indium Phosphide</title><title>Chemistry of Materials</title><description>The surface chemistry and the interface formation during the initial stages of the atomic layer deposition (ALD) of Al2O3 from trimethylaluminum (TMA) and H2O on InP(100) were studied by synchrotron radiation photoemission spectroscopy and scanning tunneling microscopy. The effect of the ex situ surface cleaning by either H2SO4 or (NH4)(2)S was examined. It is shown that the native oxide on the InP surface consisted mainly of indium hydrogen phosphates with a P enrichment at the interface with InP. After a (NH4)(2)S treatment, S was present on the surface as a sulfide in both surface and subsurface sites. Exposure to TMA led to the formation of a thin AlPO4 layer, irrespective of the surface cleaning. The surface Fermi level of p-type InP was found to be pinned close to midgap after H2SO4 cleaning and moved only slightly further toward the conduction band edge upon TMA exposure, indicating that the AlPO4/InP interface was rather defective. (NH4)(2)S passivation led to a Fermi level position of p-type InP close to the conduction band edge. Hence, the InP surface was weakly inverted, which can be attributed to surface doping by S donors. TMA exposure was found to remove surface S, which was accompanied by a shift of the Fermi level to midgap, consistent with the removal of (part of) the S donors in combination with a defective AlPO4/InP interface. Further TMA/H2O AID did not lead to any detectable changes of the AlPO4/InP interface and suggested simple overgrowth with Al2O3.</description><issn>0897-4756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqNjs1qwkAURmfRQq3tO9xdF0WY_GjiUmxFoQvBQJdhcG46t83MhPkp5h18aEP0AVx9cDgcvgc24eWymOXFfPHEnr3_5TxJeFpO2PkQXSOOCGuFmnxwPQgjYWcCXvnGOi0CWQMyOjI_EBTCKlhNR_gSPTr4wM56GhXbwKqNmoyAxlkNlSONQfWtGGnUY_xbDHEY9J2RNLC9sr5TJPGFPTai9fh62yl723xW6-3sL7YY_9HU0nfDqTpJs3y-KMplnfO0SPNsyt7vM-twCtn93Qsg7WNd</recordid><startdate>20130218</startdate><enddate>20130218</enddate><creator>Adelmann, Christoph</creator><creator>Cuypers, Daniel</creator><creator>Tallarida, Massimo</creator><creator>Rodriguez, Leonard N.J</creator><creator>De Clercq, Astrid</creator><creator>Friedrich, Daniel</creator><creator>Conard, Thierry</creator><creator>Delabie, Annelies</creator><creator>Seo, Jin Won</creator><creator>Locquet, Jean-Pierre</creator><creator>De Gendt, Stefan</creator><creator>Schmeisser, Dieter</creator><creator>Van Elshocht, Sven</creator><creator>Caymax, Matty</creator><general>American Chemical Society</general><scope>FZOIL</scope></search><sort><creationdate>20130218</creationdate><title>Surface Chemistry and Interface Formation during the Atomic Layer Deposition of Alumina from Trimethylaluminum and Water on Indium Phosphide</title><author>Adelmann, Christoph ; Cuypers, Daniel ; Tallarida, Massimo ; Rodriguez, Leonard N.J ; De Clercq, Astrid ; Friedrich, Daniel ; Conard, Thierry ; Delabie, Annelies ; Seo, Jin Won ; Locquet, Jean-Pierre ; De Gendt, Stefan ; Schmeisser, Dieter ; Van Elshocht, Sven ; Caymax, Matty</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_4027243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adelmann, Christoph</creatorcontrib><creatorcontrib>Cuypers, Daniel</creatorcontrib><creatorcontrib>Tallarida, Massimo</creatorcontrib><creatorcontrib>Rodriguez, Leonard N.J</creatorcontrib><creatorcontrib>De Clercq, Astrid</creatorcontrib><creatorcontrib>Friedrich, Daniel</creatorcontrib><creatorcontrib>Conard, Thierry</creatorcontrib><creatorcontrib>Delabie, Annelies</creatorcontrib><creatorcontrib>Seo, Jin Won</creatorcontrib><creatorcontrib>Locquet, Jean-Pierre</creatorcontrib><creatorcontrib>De Gendt, Stefan</creatorcontrib><creatorcontrib>Schmeisser, Dieter</creatorcontrib><creatorcontrib>Van Elshocht, Sven</creatorcontrib><creatorcontrib>Caymax, Matty</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>Chemistry of Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adelmann, Christoph</au><au>Cuypers, Daniel</au><au>Tallarida, Massimo</au><au>Rodriguez, Leonard N.J</au><au>De Clercq, Astrid</au><au>Friedrich, Daniel</au><au>Conard, Thierry</au><au>Delabie, Annelies</au><au>Seo, Jin Won</au><au>Locquet, Jean-Pierre</au><au>De Gendt, Stefan</au><au>Schmeisser, Dieter</au><au>Van Elshocht, Sven</au><au>Caymax, Matty</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Chemistry and Interface Formation during the Atomic Layer Deposition of Alumina from Trimethylaluminum and Water on Indium Phosphide</atitle><jtitle>Chemistry of Materials</jtitle><date>2013-02-18</date><risdate>2013</risdate><volume>25</volume><issue>7</issue><spage>1078</spage><epage>1091</epage><pages>1078-1091</pages><issn>0897-4756</issn><abstract>The surface chemistry and the interface formation during the initial stages of the atomic layer deposition (ALD) of Al2O3 from trimethylaluminum (TMA) and H2O on InP(100) were studied by synchrotron radiation photoemission spectroscopy and scanning tunneling microscopy. The effect of the ex situ surface cleaning by either H2SO4 or (NH4)(2)S was examined. It is shown that the native oxide on the InP surface consisted mainly of indium hydrogen phosphates with a P enrichment at the interface with InP. After a (NH4)(2)S treatment, S was present on the surface as a sulfide in both surface and subsurface sites. Exposure to TMA led to the formation of a thin AlPO4 layer, irrespective of the surface cleaning. The surface Fermi level of p-type InP was found to be pinned close to midgap after H2SO4 cleaning and moved only slightly further toward the conduction band edge upon TMA exposure, indicating that the AlPO4/InP interface was rather defective. (NH4)(2)S passivation led to a Fermi level position of p-type InP close to the conduction band edge. Hence, the InP surface was weakly inverted, which can be attributed to surface doping by S donors. TMA exposure was found to remove surface S, which was accompanied by a shift of the Fermi level to midgap, consistent with the removal of (part of) the S donors in combination with a defective AlPO4/InP interface. Further TMA/H2O AID did not lead to any detectable changes of the AlPO4/InP interface and suggested simple overgrowth with Al2O3.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of Materials, 2013-02, Vol.25 (7), p.1078-1091
issn 0897-4756
language eng
recordid cdi_kuleuven_dspace_123456789_402724
source Lirias (KU Leuven Association); ACS Publications
title Surface Chemistry and Interface Formation during the Atomic Layer Deposition of Alumina from Trimethylaluminum and Water on Indium Phosphide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T13%3A54%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Chemistry%20and%20Interface%20Formation%20during%20the%20Atomic%20Layer%20Deposition%20of%20Alumina%20from%20Trimethylaluminum%20and%20Water%20on%20Indium%20Phosphide&rft.jtitle=Chemistry%20of%20Materials&rft.au=Adelmann,%20Christoph&rft.date=2013-02-18&rft.volume=25&rft.issue=7&rft.spage=1078&rft.epage=1091&rft.pages=1078-1091&rft.issn=0897-4756&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_402724%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true