Seeking the strongest rigid detector
The current state of the art solutions for object detection describe each class by a set of models trained on discovered sub-classes (so called 'components'), with each model itself composed of collections of interrelated parts (deformable models). These detectors build upon the now classi...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3673 |
---|---|
container_issue | |
container_start_page | 3666 |
container_title | |
container_volume | |
creator | Benenson, Rodrigo Mathias, Markus Tuytelaars, Tinne Van Gool, Luc |
description | The current state of the art solutions for object detection describe each class by a set of models trained on discovered sub-classes (so called 'components'), with each model itself composed of collections of interrelated parts (deformable models). These detectors build upon the now classic Histogram of Oriented Gradients+linear SVM combo. Abstract In this paper we revisit some of the core assumptions in HOG+SVM and show that by properly designing the feature pooling, feature selection, preprocessing, and training methods, it is possible to reach top quality, at least for pedestrian detections, using a single rigid component. Abstract We provide experiments for a large design space, that give insights into the design of classifiers, as well as relevant information for practitioners. Our best detector is fully feed-forward, has a single unified architecture, uses only histograms of oriented gradients and colour information in monocular static images, and improves over 23 other methods on the INRIA, ETH and Caltech-USA datasets, reducing the average miss-rate over HOG+SVM by more than 30%. © 2013 IEEE. |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>kuleuven_FZOIL</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_398491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_398491</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_3984913</originalsourceid><addsrcrecordid>eNqVyr0OgjAUQOHGn0RU3qGDiYMhoRQuvbPRuOveIFyxgYChF-Pjuzg46nSG801EoGLQEaDCqVjGOWCWokGYfY2FCL131ziBHLRBE4jNmahxXS35TtLz0Hc1eZaDq10lK2IquR_WYn4rWk_hpyuxPR4u-1PUjC2NT-ps5R9FSVYlOs0gN2g1mhSV_kfufpOWX6zfwhFB0w</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Seeking the strongest rigid detector</title><source>Lirias (KU Leuven Association)</source><creator>Benenson, Rodrigo ; Mathias, Markus ; Tuytelaars, Tinne ; Van Gool, Luc</creator><creatorcontrib>Benenson, Rodrigo ; Mathias, Markus ; Tuytelaars, Tinne ; Van Gool, Luc</creatorcontrib><description>The current state of the art solutions for object detection describe each class by a set of models trained on discovered sub-classes (so called 'components'), with each model itself composed of collections of interrelated parts (deformable models). These detectors build upon the now classic Histogram of Oriented Gradients+linear SVM combo. Abstract In this paper we revisit some of the core assumptions in HOG+SVM and show that by properly designing the feature pooling, feature selection, preprocessing, and training methods, it is possible to reach top quality, at least for pedestrian detections, using a single rigid component. Abstract We provide experiments for a large design space, that give insights into the design of classifiers, as well as relevant information for practitioners. Our best detector is fully feed-forward, has a single unified architecture, uses only histograms of oriented gradients and colour information in monocular static images, and improves over 23 other methods on the INRIA, ETH and Caltech-USA datasets, reducing the average miss-rate over HOG+SVM by more than 30%. © 2013 IEEE.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 0769549896</identifier><identifier>ISBN: 9780769549897</identifier><identifier>EISSN: 1063-6919</identifier><language>eng</language><publisher>IEEE</publisher><ispartof>Proceedings CVPR 2013, 2013, p.3666-3673</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,315,776,4036,4037,25118,27837</link.rule.ids><linktorsrc>$$Uhttps://lirias.kuleuven.be/handle/123456789/398491$$EView_record_in_KU_Leuven_Association$$FView_record_in_$$GKU_Leuven_Association$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Benenson, Rodrigo</creatorcontrib><creatorcontrib>Mathias, Markus</creatorcontrib><creatorcontrib>Tuytelaars, Tinne</creatorcontrib><creatorcontrib>Van Gool, Luc</creatorcontrib><title>Seeking the strongest rigid detector</title><title>Proceedings CVPR 2013</title><description>The current state of the art solutions for object detection describe each class by a set of models trained on discovered sub-classes (so called 'components'), with each model itself composed of collections of interrelated parts (deformable models). These detectors build upon the now classic Histogram of Oriented Gradients+linear SVM combo. Abstract In this paper we revisit some of the core assumptions in HOG+SVM and show that by properly designing the feature pooling, feature selection, preprocessing, and training methods, it is possible to reach top quality, at least for pedestrian detections, using a single rigid component. Abstract We provide experiments for a large design space, that give insights into the design of classifiers, as well as relevant information for practitioners. Our best detector is fully feed-forward, has a single unified architecture, uses only histograms of oriented gradients and colour information in monocular static images, and improves over 23 other methods on the INRIA, ETH and Caltech-USA datasets, reducing the average miss-rate over HOG+SVM by more than 30%. © 2013 IEEE.</description><issn>1063-6919</issn><issn>1063-6919</issn><isbn>0769549896</isbn><isbn>9780769549897</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVyr0OgjAUQOHGn0RU3qGDiYMhoRQuvbPRuOveIFyxgYChF-Pjuzg46nSG801EoGLQEaDCqVjGOWCWokGYfY2FCL131ziBHLRBE4jNmahxXS35TtLz0Hc1eZaDq10lK2IquR_WYn4rWk_hpyuxPR4u-1PUjC2NT-ps5R9FSVYlOs0gN2g1mhSV_kfufpOWX6zfwhFB0w</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Benenson, Rodrigo</creator><creator>Mathias, Markus</creator><creator>Tuytelaars, Tinne</creator><creator>Van Gool, Luc</creator><general>IEEE</general><scope>FZOIL</scope></search><sort><creationdate>2013</creationdate><title>Seeking the strongest rigid detector</title><author>Benenson, Rodrigo ; Mathias, Markus ; Tuytelaars, Tinne ; Van Gool, Luc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_3984913</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Benenson, Rodrigo</creatorcontrib><creatorcontrib>Mathias, Markus</creatorcontrib><creatorcontrib>Tuytelaars, Tinne</creatorcontrib><creatorcontrib>Van Gool, Luc</creatorcontrib><collection>Lirias (KU Leuven Association)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Benenson, Rodrigo</au><au>Mathias, Markus</au><au>Tuytelaars, Tinne</au><au>Van Gool, Luc</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Seeking the strongest rigid detector</atitle><btitle>Proceedings CVPR 2013</btitle><date>2013</date><risdate>2013</risdate><spage>3666</spage><epage>3673</epage><pages>3666-3673</pages><issn>1063-6919</issn><eissn>1063-6919</eissn><isbn>0769549896</isbn><isbn>9780769549897</isbn><abstract>The current state of the art solutions for object detection describe each class by a set of models trained on discovered sub-classes (so called 'components'), with each model itself composed of collections of interrelated parts (deformable models). These detectors build upon the now classic Histogram of Oriented Gradients+linear SVM combo. Abstract In this paper we revisit some of the core assumptions in HOG+SVM and show that by properly designing the feature pooling, feature selection, preprocessing, and training methods, it is possible to reach top quality, at least for pedestrian detections, using a single rigid component. Abstract We provide experiments for a large design space, that give insights into the design of classifiers, as well as relevant information for practitioners. Our best detector is fully feed-forward, has a single unified architecture, uses only histograms of oriented gradients and colour information in monocular static images, and improves over 23 other methods on the INRIA, ETH and Caltech-USA datasets, reducing the average miss-rate over HOG+SVM by more than 30%. © 2013 IEEE.</abstract><pub>IEEE</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6919 |
ispartof | Proceedings CVPR 2013, 2013, p.3666-3673 |
issn | 1063-6919 1063-6919 |
language | eng |
recordid | cdi_kuleuven_dspace_123456789_398491 |
source | Lirias (KU Leuven Association) |
title | Seeking the strongest rigid detector |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A05%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven_FZOIL&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Seeking%20the%20strongest%20rigid%20detector&rft.btitle=Proceedings%20CVPR%202013&rft.au=Benenson,%20Rodrigo&rft.date=2013&rft.spage=3666&rft.epage=3673&rft.pages=3666-3673&rft.issn=1063-6919&rft.eissn=1063-6919&rft.isbn=0769549896&rft.isbn_list=9780769549897&rft_id=info:doi/&rft_dat=%3Ckuleuven_FZOIL%3E123456789_398491%3C/kuleuven_FZOIL%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |