Bayesian Grammar Learning for Inverse Procedural Modeling

In the fields of urban reconstruction and city modeling, shape grammars have emerged as a powerful tool for both synthesizing novel designs and reconstructing existing buildings. So far, a human expert was required to write grammars for specific building styles, which limited the large-scale applica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Martinovic, Andelo, Van Gool, Luc
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 208
container_issue
container_start_page 201
container_title
container_volume
creator Martinovic, Andelo
Van Gool, Luc
description In the fields of urban reconstruction and city modeling, shape grammars have emerged as a powerful tool for both synthesizing novel designs and reconstructing existing buildings. So far, a human expert was required to write grammars for specific building styles, which limited the large-scale applicability of these methods. We present a way to automatically learn two-dimensional stochastic context-free grammars (2D-SCFGs) from a set of labeled building facades. To this end, we use Bayesian Model Merging, a technique originally developed in the field of natural language processing, which we extend to the domain of two-dimensional languages. Given a set of labeled positive examples, we induce a grammar which can be sampled to create novel instances of the same building style. Additionally, we demonstrate that our learned grammar can be used for parsing existing facade imagery. Experiments conducted on the dataset of Haussmannian buildings in Paris show that our parsing with learned grammars outperforms bottom-up classifiers and is on par with approaches that use a manually designed style grammar.
format Conference Proceeding
fullrecord <record><control><sourceid>kuleuven_FZOIL</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_395214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_395214</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_3952143</originalsourceid><addsrcrecordid>eNqVyrsOgjAUgOHGS-KNd-jmYEgohcJZNd4STRzcmwoHQyzFtED07XVwcNTpH76_R8YsENwXwKBPJkEiII4gBTH4ghHxnCsvQSgSwVNIxwSW6omuVIZuraoqZekBlTWludKitnRvOrQO6cnWGeatVZoe6xz122dkWCjt0Pt0Suab9Xm182-txrZDI3N3VxlKFvIoFkkKkkMcsoj_cy5-O2XzaPgLO99JNw</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Bayesian Grammar Learning for Inverse Procedural Modeling</title><source>Lirias (KU Leuven Association)</source><creator>Martinovic, Andelo ; Van Gool, Luc</creator><creatorcontrib>Martinovic, Andelo ; Van Gool, Luc</creatorcontrib><description>In the fields of urban reconstruction and city modeling, shape grammars have emerged as a powerful tool for both synthesizing novel designs and reconstructing existing buildings. So far, a human expert was required to write grammars for specific building styles, which limited the large-scale applicability of these methods. We present a way to automatically learn two-dimensional stochastic context-free grammars (2D-SCFGs) from a set of labeled building facades. To this end, we use Bayesian Model Merging, a technique originally developed in the field of natural language processing, which we extend to the domain of two-dimensional languages. Given a set of labeled positive examples, we induce a grammar which can be sampled to create novel instances of the same building style. Additionally, we demonstrate that our learned grammar can be used for parsing existing facade imagery. Experiments conducted on the dataset of Haussmannian buildings in Paris show that our parsing with learned grammars outperforms bottom-up classifiers and is on par with approaches that use a manually designed style grammar.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 0769549896</identifier><identifier>ISBN: 9780769549897</identifier><identifier>EISSN: 1063-6919</identifier><language>eng</language><publisher>IEEE</publisher><ispartof>Proceedings CVPR 2013, 2013, p.201-208</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,315,776,25118,27837</link.rule.ids><linktorsrc>$$Uhttps://lirias.kuleuven.be/handle/123456789/395214$$EView_record_in_KU_Leuven_Association$$FView_record_in_$$GKU_Leuven_Association$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Martinovic, Andelo</creatorcontrib><creatorcontrib>Van Gool, Luc</creatorcontrib><title>Bayesian Grammar Learning for Inverse Procedural Modeling</title><title>Proceedings CVPR 2013</title><description>In the fields of urban reconstruction and city modeling, shape grammars have emerged as a powerful tool for both synthesizing novel designs and reconstructing existing buildings. So far, a human expert was required to write grammars for specific building styles, which limited the large-scale applicability of these methods. We present a way to automatically learn two-dimensional stochastic context-free grammars (2D-SCFGs) from a set of labeled building facades. To this end, we use Bayesian Model Merging, a technique originally developed in the field of natural language processing, which we extend to the domain of two-dimensional languages. Given a set of labeled positive examples, we induce a grammar which can be sampled to create novel instances of the same building style. Additionally, we demonstrate that our learned grammar can be used for parsing existing facade imagery. Experiments conducted on the dataset of Haussmannian buildings in Paris show that our parsing with learned grammars outperforms bottom-up classifiers and is on par with approaches that use a manually designed style grammar.</description><issn>1063-6919</issn><issn>1063-6919</issn><isbn>0769549896</isbn><isbn>9780769549897</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVyrsOgjAUgOHGS-KNd-jmYEgohcJZNd4STRzcmwoHQyzFtED07XVwcNTpH76_R8YsENwXwKBPJkEiII4gBTH4ghHxnCsvQSgSwVNIxwSW6omuVIZuraoqZekBlTWludKitnRvOrQO6cnWGeatVZoe6xz122dkWCjt0Pt0Suab9Xm182-txrZDI3N3VxlKFvIoFkkKkkMcsoj_cy5-O2XzaPgLO99JNw</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Martinovic, Andelo</creator><creator>Van Gool, Luc</creator><general>IEEE</general><scope>FZOIL</scope></search><sort><creationdate>201306</creationdate><title>Bayesian Grammar Learning for Inverse Procedural Modeling</title><author>Martinovic, Andelo ; Van Gool, Luc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_3952143</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Martinovic, Andelo</creatorcontrib><creatorcontrib>Van Gool, Luc</creatorcontrib><collection>Lirias (KU Leuven Association)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Martinovic, Andelo</au><au>Van Gool, Luc</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Bayesian Grammar Learning for Inverse Procedural Modeling</atitle><btitle>Proceedings CVPR 2013</btitle><date>2013-06</date><risdate>2013</risdate><spage>201</spage><epage>208</epage><pages>201-208</pages><issn>1063-6919</issn><eissn>1063-6919</eissn><isbn>0769549896</isbn><isbn>9780769549897</isbn><abstract>In the fields of urban reconstruction and city modeling, shape grammars have emerged as a powerful tool for both synthesizing novel designs and reconstructing existing buildings. So far, a human expert was required to write grammars for specific building styles, which limited the large-scale applicability of these methods. We present a way to automatically learn two-dimensional stochastic context-free grammars (2D-SCFGs) from a set of labeled building facades. To this end, we use Bayesian Model Merging, a technique originally developed in the field of natural language processing, which we extend to the domain of two-dimensional languages. Given a set of labeled positive examples, we induce a grammar which can be sampled to create novel instances of the same building style. Additionally, we demonstrate that our learned grammar can be used for parsing existing facade imagery. Experiments conducted on the dataset of Haussmannian buildings in Paris show that our parsing with learned grammars outperforms bottom-up classifiers and is on par with approaches that use a manually designed style grammar.</abstract><pub>IEEE</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof Proceedings CVPR 2013, 2013, p.201-208
issn 1063-6919
1063-6919
language eng
recordid cdi_kuleuven_dspace_123456789_395214
source Lirias (KU Leuven Association)
title Bayesian Grammar Learning for Inverse Procedural Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A15%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven_FZOIL&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Bayesian%20Grammar%20Learning%20for%20Inverse%20Procedural%20Modeling&rft.btitle=Proceedings%20CVPR%202013&rft.au=Martinovic,%20Andelo&rft.date=2013-06&rft.spage=201&rft.epage=208&rft.pages=201-208&rft.issn=1063-6919&rft.eissn=1063-6919&rft.isbn=0769549896&rft.isbn_list=9780769549897&rft_id=info:doi/&rft_dat=%3Ckuleuven_FZOIL%3E123456789_395214%3C/kuleuven_FZOIL%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true