Electrical characterization of Cu2ZnSnSe4 solar cells from selenization of sputtered metal layers

We report on the electrical and physical properties of Cu 2ZnSnSe4 (CZTSe) solar cells consisting of an absorber layer fabricated by selenization of sputtered Cu, Zn, Sn multilayers. Cross-section scanning electron microscopy images show that the polycrystalline absorber layers are approximately 1 μ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thin Solid Films 2013, Vol.535 (1), p.348-352
Hauptverfasser: Brammertz, Guy, Ren, Yi, Buffière, Marie, Mertens, Sofie, Hendrickx, Jurgen, Marko, Hakim, Esmaeil Zaghi, Armin, Lenaers, Nick, Köble, Christine, Vleugels, Jef, Meuris, Marc, Poortmans, Jozef
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 352
container_issue 1
container_start_page 348
container_title Thin Solid Films
container_volume 535
creator Brammertz, Guy
Ren, Yi
Buffière, Marie
Mertens, Sofie
Hendrickx, Jurgen
Marko, Hakim
Esmaeil Zaghi, Armin
Lenaers, Nick
Köble, Christine
Vleugels, Jef
Meuris, Marc
Poortmans, Jozef
description We report on the electrical and physical properties of Cu 2ZnSnSe4 (CZTSe) solar cells consisting of an absorber layer fabricated by selenization of sputtered Cu, Zn, Sn multilayers. Cross-section scanning electron microscopy images show that the polycrystalline absorber layers are approximately 1 μm thick and that the typical grain size is of the order of 1 μm. Energy-dispersive X-ray spectroscopy measurements show Cu-poor and Zn-rich compositions with Cu/(Zn + Sn) ~ 0.8 and Zn/Sn ~ 1.2. Solar cells are fabricated out of this absorber material using a standard process flow for chalcogenide solar cells. Under AM1.5 G illumination, the best 1 × 1 cm2 CZTSe solar cell shows an efficiency of 6.3% with a maximum short circuit current of 31.3 mA/cm2, an open circuit voltage of 0.39 V and a fill factor of 52%. Doping density of the absorber layers is derived using the drivel level capacitance profiling (DLCP) technique, showing low p-type doping density which seems to increase exponentially with the Zn/Sn ratio. Comparing the values obtained from DLCP to the ones derived from Mott-Schottky plots of the same devices, it is shown that for CZTSe care has to be taken when deriving the doping density. Similar to copper indium gallium selenide junctions, Mott-Schottky plots overestimate the amount of free carriers in the buffer due to the presence of fast defect states inside the bandgap. © 2012 Elsevier B.V.
format Article
fullrecord <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_370515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_370515</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_3705153</originalsourceid><addsrcrecordid>eNqVzLsOgkAQheEtNBEv77CdhTEZWFCpicZeKxsyWYeIjgvZWYz69FpYWGp1mu_8PRUBpDBfQA4DNRQ5A0CcJCZSuGaywdcWWdsTerSBfP3EUDdON5UuuuTgdm5HqZaG0WtLzKIr31y1EJP7stJ24f2mo75SePcYH-RlrPoVstDksyM13az3xXZ-6Zi6G7nyKC1aKuPEpNliucpLs4Qszsw_cvabLMM9mBesw1OY</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electrical characterization of Cu2ZnSnSe4 solar cells from selenization of sputtered metal layers</title><source>Lirias (KU Leuven Association)</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Brammertz, Guy ; Ren, Yi ; Buffière, Marie ; Mertens, Sofie ; Hendrickx, Jurgen ; Marko, Hakim ; Esmaeil Zaghi, Armin ; Lenaers, Nick ; Köble, Christine ; Vleugels, Jef ; Meuris, Marc ; Poortmans, Jozef</creator><creatorcontrib>Brammertz, Guy ; Ren, Yi ; Buffière, Marie ; Mertens, Sofie ; Hendrickx, Jurgen ; Marko, Hakim ; Esmaeil Zaghi, Armin ; Lenaers, Nick ; Köble, Christine ; Vleugels, Jef ; Meuris, Marc ; Poortmans, Jozef</creatorcontrib><description>We report on the electrical and physical properties of Cu 2ZnSnSe4 (CZTSe) solar cells consisting of an absorber layer fabricated by selenization of sputtered Cu, Zn, Sn multilayers. Cross-section scanning electron microscopy images show that the polycrystalline absorber layers are approximately 1 μm thick and that the typical grain size is of the order of 1 μm. Energy-dispersive X-ray spectroscopy measurements show Cu-poor and Zn-rich compositions with Cu/(Zn + Sn) ~ 0.8 and Zn/Sn ~ 1.2. Solar cells are fabricated out of this absorber material using a standard process flow for chalcogenide solar cells. Under AM1.5 G illumination, the best 1 × 1 cm2 CZTSe solar cell shows an efficiency of 6.3% with a maximum short circuit current of 31.3 mA/cm2, an open circuit voltage of 0.39 V and a fill factor of 52%. Doping density of the absorber layers is derived using the drivel level capacitance profiling (DLCP) technique, showing low p-type doping density which seems to increase exponentially with the Zn/Sn ratio. Comparing the values obtained from DLCP to the ones derived from Mott-Schottky plots of the same devices, it is shown that for CZTSe care has to be taken when deriving the doping density. Similar to copper indium gallium selenide junctions, Mott-Schottky plots overestimate the amount of free carriers in the buffer due to the presence of fast defect states inside the bandgap. © 2012 Elsevier B.V.</description><identifier>ISSN: 0040-6090</identifier><language>eng</language><publisher>Elsevier Sequoia</publisher><ispartof>Thin Solid Films, 2013, Vol.535 (1), p.348-352</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,776,780,4010,27837</link.rule.ids></links><search><creatorcontrib>Brammertz, Guy</creatorcontrib><creatorcontrib>Ren, Yi</creatorcontrib><creatorcontrib>Buffière, Marie</creatorcontrib><creatorcontrib>Mertens, Sofie</creatorcontrib><creatorcontrib>Hendrickx, Jurgen</creatorcontrib><creatorcontrib>Marko, Hakim</creatorcontrib><creatorcontrib>Esmaeil Zaghi, Armin</creatorcontrib><creatorcontrib>Lenaers, Nick</creatorcontrib><creatorcontrib>Köble, Christine</creatorcontrib><creatorcontrib>Vleugels, Jef</creatorcontrib><creatorcontrib>Meuris, Marc</creatorcontrib><creatorcontrib>Poortmans, Jozef</creatorcontrib><title>Electrical characterization of Cu2ZnSnSe4 solar cells from selenization of sputtered metal layers</title><title>Thin Solid Films</title><description>We report on the electrical and physical properties of Cu 2ZnSnSe4 (CZTSe) solar cells consisting of an absorber layer fabricated by selenization of sputtered Cu, Zn, Sn multilayers. Cross-section scanning electron microscopy images show that the polycrystalline absorber layers are approximately 1 μm thick and that the typical grain size is of the order of 1 μm. Energy-dispersive X-ray spectroscopy measurements show Cu-poor and Zn-rich compositions with Cu/(Zn + Sn) ~ 0.8 and Zn/Sn ~ 1.2. Solar cells are fabricated out of this absorber material using a standard process flow for chalcogenide solar cells. Under AM1.5 G illumination, the best 1 × 1 cm2 CZTSe solar cell shows an efficiency of 6.3% with a maximum short circuit current of 31.3 mA/cm2, an open circuit voltage of 0.39 V and a fill factor of 52%. Doping density of the absorber layers is derived using the drivel level capacitance profiling (DLCP) technique, showing low p-type doping density which seems to increase exponentially with the Zn/Sn ratio. Comparing the values obtained from DLCP to the ones derived from Mott-Schottky plots of the same devices, it is shown that for CZTSe care has to be taken when deriving the doping density. Similar to copper indium gallium selenide junctions, Mott-Schottky plots overestimate the amount of free carriers in the buffer due to the presence of fast defect states inside the bandgap. © 2012 Elsevier B.V.</description><issn>0040-6090</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVzLsOgkAQheEtNBEv77CdhTEZWFCpicZeKxsyWYeIjgvZWYz69FpYWGp1mu_8PRUBpDBfQA4DNRQ5A0CcJCZSuGaywdcWWdsTerSBfP3EUDdON5UuuuTgdm5HqZaG0WtLzKIr31y1EJP7stJ24f2mo75SePcYH-RlrPoVstDksyM13az3xXZ-6Zi6G7nyKC1aKuPEpNliucpLs4Qszsw_cvabLMM9mBesw1OY</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Brammertz, Guy</creator><creator>Ren, Yi</creator><creator>Buffière, Marie</creator><creator>Mertens, Sofie</creator><creator>Hendrickx, Jurgen</creator><creator>Marko, Hakim</creator><creator>Esmaeil Zaghi, Armin</creator><creator>Lenaers, Nick</creator><creator>Köble, Christine</creator><creator>Vleugels, Jef</creator><creator>Meuris, Marc</creator><creator>Poortmans, Jozef</creator><general>Elsevier Sequoia</general><scope>FZOIL</scope></search><sort><creationdate>2013</creationdate><title>Electrical characterization of Cu2ZnSnSe4 solar cells from selenization of sputtered metal layers</title><author>Brammertz, Guy ; Ren, Yi ; Buffière, Marie ; Mertens, Sofie ; Hendrickx, Jurgen ; Marko, Hakim ; Esmaeil Zaghi, Armin ; Lenaers, Nick ; Köble, Christine ; Vleugels, Jef ; Meuris, Marc ; Poortmans, Jozef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_3705153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brammertz, Guy</creatorcontrib><creatorcontrib>Ren, Yi</creatorcontrib><creatorcontrib>Buffière, Marie</creatorcontrib><creatorcontrib>Mertens, Sofie</creatorcontrib><creatorcontrib>Hendrickx, Jurgen</creatorcontrib><creatorcontrib>Marko, Hakim</creatorcontrib><creatorcontrib>Esmaeil Zaghi, Armin</creatorcontrib><creatorcontrib>Lenaers, Nick</creatorcontrib><creatorcontrib>Köble, Christine</creatorcontrib><creatorcontrib>Vleugels, Jef</creatorcontrib><creatorcontrib>Meuris, Marc</creatorcontrib><creatorcontrib>Poortmans, Jozef</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>Thin Solid Films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brammertz, Guy</au><au>Ren, Yi</au><au>Buffière, Marie</au><au>Mertens, Sofie</au><au>Hendrickx, Jurgen</au><au>Marko, Hakim</au><au>Esmaeil Zaghi, Armin</au><au>Lenaers, Nick</au><au>Köble, Christine</au><au>Vleugels, Jef</au><au>Meuris, Marc</au><au>Poortmans, Jozef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical characterization of Cu2ZnSnSe4 solar cells from selenization of sputtered metal layers</atitle><jtitle>Thin Solid Films</jtitle><date>2013</date><risdate>2013</risdate><volume>535</volume><issue>1</issue><spage>348</spage><epage>352</epage><pages>348-352</pages><issn>0040-6090</issn><abstract>We report on the electrical and physical properties of Cu 2ZnSnSe4 (CZTSe) solar cells consisting of an absorber layer fabricated by selenization of sputtered Cu, Zn, Sn multilayers. Cross-section scanning electron microscopy images show that the polycrystalline absorber layers are approximately 1 μm thick and that the typical grain size is of the order of 1 μm. Energy-dispersive X-ray spectroscopy measurements show Cu-poor and Zn-rich compositions with Cu/(Zn + Sn) ~ 0.8 and Zn/Sn ~ 1.2. Solar cells are fabricated out of this absorber material using a standard process flow for chalcogenide solar cells. Under AM1.5 G illumination, the best 1 × 1 cm2 CZTSe solar cell shows an efficiency of 6.3% with a maximum short circuit current of 31.3 mA/cm2, an open circuit voltage of 0.39 V and a fill factor of 52%. Doping density of the absorber layers is derived using the drivel level capacitance profiling (DLCP) technique, showing low p-type doping density which seems to increase exponentially with the Zn/Sn ratio. Comparing the values obtained from DLCP to the ones derived from Mott-Schottky plots of the same devices, it is shown that for CZTSe care has to be taken when deriving the doping density. Similar to copper indium gallium selenide junctions, Mott-Schottky plots overestimate the amount of free carriers in the buffer due to the presence of fast defect states inside the bandgap. © 2012 Elsevier B.V.</abstract><pub>Elsevier Sequoia</pub></addata></record>
fulltext fulltext
identifier ISSN: 0040-6090
ispartof Thin Solid Films, 2013, Vol.535 (1), p.348-352
issn 0040-6090
language eng
recordid cdi_kuleuven_dspace_123456789_370515
source Lirias (KU Leuven Association); Elsevier ScienceDirect Journals Complete
title Electrical characterization of Cu2ZnSnSe4 solar cells from selenization of sputtered metal layers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A42%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20characterization%20of%20Cu2ZnSnSe4%20solar%20cells%20from%20selenization%20of%20sputtered%20metal%20layers&rft.jtitle=Thin%20Solid%20Films&rft.au=Brammertz,%20Guy&rft.date=2013&rft.volume=535&rft.issue=1&rft.spage=348&rft.epage=352&rft.pages=348-352&rft.issn=0040-6090&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_370515%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true