Extensions of Fibonacci lattice rules
We study the trigonometric degree of pairs of embedded cubature rules for the approximation of two-dimensional integrals, where the basic cubature rule is a Fibonacci lattice rule. The embedded cubature rule is constructed by simply doubling the points which results in adding a shifted version of th...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 270 |
---|---|
container_issue | |
container_start_page | 259 |
container_title | |
container_volume | |
creator | Cools, Ronald Nuyens, Dirk |
description | We study the trigonometric degree of pairs of embedded cubature rules for the approximation of two-dimensional integrals, where the basic cubature rule is a Fibonacci lattice rule. The embedded cubature rule is constructed by simply doubling the points which results in adding a shifted version of the basic Fibonacci rule. An explicit expression is derived for the trigonometric degree of this particular extension of the Fibonacci rule based on the index of the Fibonacci number. |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_218328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_218328</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_2183283</originalsourceid><addsrcrecordid>eNpjZuC1NLcwNjMxMjAxNDCz4GDgLS7OMgACY3MjM3MDTgZV14qS1LzizPy8YoX8NAW3zKT8vMTk5EyFnMSSkszkVIWi0pzUYh4G1rTEnOJUXijNzaDu5hri7KGbDZQtLUvNi08pLkhMTo03NDI2MTUzt7CMNzK0MDayMOZm0CZOZXxJRYkx8eYCAAXgPn4</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Extensions of Fibonacci lattice rules</title><source>Lirias (KU Leuven Association)</source><source>Springer Books</source><creator>Cools, Ronald ; Nuyens, Dirk</creator><contributor>Owen, A.B ; LEcuyer, P</contributor><creatorcontrib>Cools, Ronald ; Nuyens, Dirk ; Owen, A.B ; LEcuyer, P</creatorcontrib><description>We study the trigonometric degree of pairs of embedded cubature rules for the approximation of two-dimensional integrals, where the basic cubature rule is a Fibonacci lattice rule. The embedded cubature rule is constructed by simply doubling the points which results in adding a shifted version of the basic Fibonacci rule. An explicit expression is derived for the trigonometric degree of this particular extension of the Fibonacci rule based on the index of the Fibonacci number.</description><identifier>ISBN: 9783642041068</identifier><identifier>ISBN: 364204106X</identifier><language>eng</language><publisher>Springer</publisher><ispartof>Monte Carlo and Quasi-Monte Carlo Methods 2008, 2009, p.259-270</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,315,776,780,785,786,27837</link.rule.ids></links><search><contributor>Owen, A.B</contributor><contributor>LEcuyer, P</contributor><creatorcontrib>Cools, Ronald</creatorcontrib><creatorcontrib>Nuyens, Dirk</creatorcontrib><title>Extensions of Fibonacci lattice rules</title><title>Monte Carlo and Quasi-Monte Carlo Methods 2008</title><description>We study the trigonometric degree of pairs of embedded cubature rules for the approximation of two-dimensional integrals, where the basic cubature rule is a Fibonacci lattice rule. The embedded cubature rule is constructed by simply doubling the points which results in adding a shifted version of the basic Fibonacci rule. An explicit expression is derived for the trigonometric degree of this particular extension of the Fibonacci rule based on the index of the Fibonacci number.</description><isbn>9783642041068</isbn><isbn>364204106X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>FZOIL</sourceid><recordid>eNpjZuC1NLcwNjMxMjAxNDCz4GDgLS7OMgACY3MjM3MDTgZV14qS1LzizPy8YoX8NAW3zKT8vMTk5EyFnMSSkszkVIWi0pzUYh4G1rTEnOJUXijNzaDu5hri7KGbDZQtLUvNi08pLkhMTo03NDI2MTUzt7CMNzK0MDayMOZm0CZOZXxJRYkx8eYCAAXgPn4</recordid><startdate>20091117</startdate><enddate>20091117</enddate><creator>Cools, Ronald</creator><creator>Nuyens, Dirk</creator><general>Springer</general><scope>FZOIL</scope></search><sort><creationdate>20091117</creationdate><title>Extensions of Fibonacci lattice rules</title><author>Cools, Ronald ; Nuyens, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_2183283</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Cools, Ronald</creatorcontrib><creatorcontrib>Nuyens, Dirk</creatorcontrib><collection>Lirias (KU Leuven Association)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cools, Ronald</au><au>Nuyens, Dirk</au><au>Owen, A.B</au><au>LEcuyer, P</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Extensions of Fibonacci lattice rules</atitle><btitle>Monte Carlo and Quasi-Monte Carlo Methods 2008</btitle><date>2009-11-17</date><risdate>2009</risdate><spage>259</spage><epage>270</epage><pages>259-270</pages><isbn>9783642041068</isbn><isbn>364204106X</isbn><abstract>We study the trigonometric degree of pairs of embedded cubature rules for the approximation of two-dimensional integrals, where the basic cubature rule is a Fibonacci lattice rule. The embedded cubature rule is constructed by simply doubling the points which results in adding a shifted version of the basic Fibonacci rule. An explicit expression is derived for the trigonometric degree of this particular extension of the Fibonacci rule based on the index of the Fibonacci number.</abstract><pub>Springer</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISBN: 9783642041068 |
ispartof | Monte Carlo and Quasi-Monte Carlo Methods 2008, 2009, p.259-270 |
issn | |
language | eng |
recordid | cdi_kuleuven_dspace_123456789_218328 |
source | Lirias (KU Leuven Association); Springer Books |
title | Extensions of Fibonacci lattice rules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A55%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Extensions%20of%20Fibonacci%20lattice%20rules&rft.btitle=Monte%20Carlo%20and%20Quasi-Monte%20Carlo%20Methods%202008&rft.au=Cools,%20Ronald&rft.date=2009-11-17&rft.spage=259&rft.epage=270&rft.pages=259-270&rft.isbn=9783642041068&rft.isbn_list=364204106X&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_218328%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |