Extensions of Fibonacci lattice rules

We study the trigonometric degree of pairs of embedded cubature rules for the approximation of two-dimensional integrals, where the basic cubature rule is a Fibonacci lattice rule. The embedded cubature rule is constructed by simply doubling the points which results in adding a shifted version of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cools, Ronald, Nuyens, Dirk
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 270
container_issue
container_start_page 259
container_title
container_volume
creator Cools, Ronald
Nuyens, Dirk
description We study the trigonometric degree of pairs of embedded cubature rules for the approximation of two-dimensional integrals, where the basic cubature rule is a Fibonacci lattice rule. The embedded cubature rule is constructed by simply doubling the points which results in adding a shifted version of the basic Fibonacci rule. An explicit expression is derived for the trigonometric degree of this particular extension of the Fibonacci rule based on the index of the Fibonacci number.
format Conference Proceeding
fullrecord <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_218328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_218328</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_2183283</originalsourceid><addsrcrecordid>eNpjZuC1NLcwNjMxMjAxNDCz4GDgLS7OMgACY3MjM3MDTgZV14qS1LzizPy8YoX8NAW3zKT8vMTk5EyFnMSSkszkVIWi0pzUYh4G1rTEnOJUXijNzaDu5hri7KGbDZQtLUvNi08pLkhMTo03NDI2MTUzt7CMNzK0MDayMOZm0CZOZXxJRYkx8eYCAAXgPn4</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Extensions of Fibonacci lattice rules</title><source>Lirias (KU Leuven Association)</source><source>Springer Books</source><creator>Cools, Ronald ; Nuyens, Dirk</creator><contributor>Owen, A.B ; LEcuyer, P</contributor><creatorcontrib>Cools, Ronald ; Nuyens, Dirk ; Owen, A.B ; LEcuyer, P</creatorcontrib><description>We study the trigonometric degree of pairs of embedded cubature rules for the approximation of two-dimensional integrals, where the basic cubature rule is a Fibonacci lattice rule. The embedded cubature rule is constructed by simply doubling the points which results in adding a shifted version of the basic Fibonacci rule. An explicit expression is derived for the trigonometric degree of this particular extension of the Fibonacci rule based on the index of the Fibonacci number.</description><identifier>ISBN: 9783642041068</identifier><identifier>ISBN: 364204106X</identifier><language>eng</language><publisher>Springer</publisher><ispartof>Monte Carlo and Quasi-Monte Carlo Methods 2008, 2009, p.259-270</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,315,776,780,785,786,27837</link.rule.ids></links><search><contributor>Owen, A.B</contributor><contributor>LEcuyer, P</contributor><creatorcontrib>Cools, Ronald</creatorcontrib><creatorcontrib>Nuyens, Dirk</creatorcontrib><title>Extensions of Fibonacci lattice rules</title><title>Monte Carlo and Quasi-Monte Carlo Methods 2008</title><description>We study the trigonometric degree of pairs of embedded cubature rules for the approximation of two-dimensional integrals, where the basic cubature rule is a Fibonacci lattice rule. The embedded cubature rule is constructed by simply doubling the points which results in adding a shifted version of the basic Fibonacci rule. An explicit expression is derived for the trigonometric degree of this particular extension of the Fibonacci rule based on the index of the Fibonacci number.</description><isbn>9783642041068</isbn><isbn>364204106X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>FZOIL</sourceid><recordid>eNpjZuC1NLcwNjMxMjAxNDCz4GDgLS7OMgACY3MjM3MDTgZV14qS1LzizPy8YoX8NAW3zKT8vMTk5EyFnMSSkszkVIWi0pzUYh4G1rTEnOJUXijNzaDu5hri7KGbDZQtLUvNi08pLkhMTo03NDI2MTUzt7CMNzK0MDayMOZm0CZOZXxJRYkx8eYCAAXgPn4</recordid><startdate>20091117</startdate><enddate>20091117</enddate><creator>Cools, Ronald</creator><creator>Nuyens, Dirk</creator><general>Springer</general><scope>FZOIL</scope></search><sort><creationdate>20091117</creationdate><title>Extensions of Fibonacci lattice rules</title><author>Cools, Ronald ; Nuyens, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_2183283</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Cools, Ronald</creatorcontrib><creatorcontrib>Nuyens, Dirk</creatorcontrib><collection>Lirias (KU Leuven Association)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cools, Ronald</au><au>Nuyens, Dirk</au><au>Owen, A.B</au><au>LEcuyer, P</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Extensions of Fibonacci lattice rules</atitle><btitle>Monte Carlo and Quasi-Monte Carlo Methods 2008</btitle><date>2009-11-17</date><risdate>2009</risdate><spage>259</spage><epage>270</epage><pages>259-270</pages><isbn>9783642041068</isbn><isbn>364204106X</isbn><abstract>We study the trigonometric degree of pairs of embedded cubature rules for the approximation of two-dimensional integrals, where the basic cubature rule is a Fibonacci lattice rule. The embedded cubature rule is constructed by simply doubling the points which results in adding a shifted version of the basic Fibonacci rule. An explicit expression is derived for the trigonometric degree of this particular extension of the Fibonacci rule based on the index of the Fibonacci number.</abstract><pub>Springer</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISBN: 9783642041068
ispartof Monte Carlo and Quasi-Monte Carlo Methods 2008, 2009, p.259-270
issn
language eng
recordid cdi_kuleuven_dspace_123456789_218328
source Lirias (KU Leuven Association); Springer Books
title Extensions of Fibonacci lattice rules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A55%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Extensions%20of%20Fibonacci%20lattice%20rules&rft.btitle=Monte%20Carlo%20and%20Quasi-Monte%20Carlo%20Methods%202008&rft.au=Cools,%20Ronald&rft.date=2009-11-17&rft.spage=259&rft.epage=270&rft.pages=259-270&rft.isbn=9783642041068&rft.isbn_list=364204106X&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_218328%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true