Orthogonal rational functions, associated rational functions and functions of the second kind

Consider the sequence of poles A = {α_1,α_2, . . .}, and suppose the rational functions φ_j with poles in A form an orthonormal system with respect to a Hermitian positive-definite inner product. Further, assume the φ_j satisfy a three-term recurrence relation. Let the rational function φ^{(1)}_{j\1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Deckers, Karl, Bultheel, Adhemar
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 843
container_issue
container_start_page 838
container_title
container_volume 2
creator Deckers, Karl
Bultheel, Adhemar
description Consider the sequence of poles A = {α_1,α_2, . . .}, and suppose the rational functions φ_j with poles in A form an orthonormal system with respect to a Hermitian positive-definite inner product. Further, assume the φ_j satisfy a three-term recurrence relation. Let the rational function φ^{(1)}_{j\1} with poles in {α_2, α_3, . . .} represent the associated rational function of φ_j of order 1; i.e. the φ_^{(1)}_{j\1} do satisfy the same three-term recurrence relation as the φ_j . In this paper we then give a relation between φ_j and φ^{(1)}_{j\1} in terms of the so-called rational functions of the second kind. Next, under certain conditions on the poles in A, we prove that the φ^{(1)}_{j\1} form an orthonormal system of rational functions with respect to a Hermitian positive-definite inner product. Finally, we give a relation between associated rational functions of different order, independent of whether they form an orthonormal system.
format Conference Proceeding
fullrecord <record><control><sourceid>kuleuven_FZOIL</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_187032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_187032</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_1870323</originalsourceid><addsrcrecordid>eNqNTr0KwjAYDKhg0b5DNgctJE1r0lkUNxdXCTFJbWlJpF8qPr5VHBwcOt0vx01QXHBRCEE5oSnjUxSlhIuEFLmYoxigvpIs4zllhETocupC5W_eqRZ3KtQfUvZOvylssALwulbBmj8xVs78KF_iUFkMVvvBb2pnlmhWqhZs_MUFWh32590xafrW9g_rpIG70lYOR7N8O9yWVHDCUrZA63FNGZ6Bjd99AaD9Vik</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Orthogonal rational functions, associated rational functions and functions of the second kind</title><source>Lirias (KU Leuven Association)</source><creator>Deckers, Karl ; Bultheel, Adhemar</creator><contributor>Hunter, A ; Ao, S.I ; Hukins, D.W.L ; Gelman, L ; Korsunsky, A.M</contributor><creatorcontrib>Deckers, Karl ; Bultheel, Adhemar ; Hunter, A ; Ao, S.I ; Hukins, D.W.L ; Gelman, L ; Korsunsky, A.M</creatorcontrib><description>Consider the sequence of poles A = {α_1,α_2, . . .}, and suppose the rational functions φ_j with poles in A form an orthonormal system with respect to a Hermitian positive-definite inner product. Further, assume the φ_j satisfy a three-term recurrence relation. Let the rational function φ^{(1)}_{j\1} with poles in {α_2, α_3, . . .} represent the associated rational function of φ_j of order 1; i.e. the φ_^{(1)}_{j\1} do satisfy the same three-term recurrence relation as the φ_j . In this paper we then give a relation between φ_j and φ^{(1)}_{j\1} in terms of the so-called rational functions of the second kind. Next, under certain conditions on the poles in A, we prove that the φ^{(1)}_{j\1} form an orthonormal system of rational functions with respect to a Hermitian positive-definite inner product. Finally, we give a relation between associated rational functions of different order, independent of whether they form an orthonormal system.</description><identifier>ISSN: 2078-0958</identifier><identifier>ISBN: 9789881701237</identifier><identifier>ISBN: 9881701236</identifier><language>eng</language><publisher>London, United Kingdom: Newswood Limited, International Association of Engineers</publisher><ispartof>Proceedings of the World Congress on Engineering 2008, 2008, Vol.2, p.838-843</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,315,776,27839</link.rule.ids><linktorsrc>$$Uhttps://lirias.kuleuven.be/handle/123456789/187032$$EView_record_in_KU_Leuven_Association$$FView_record_in_$$GKU_Leuven_Association</linktorsrc></links><search><contributor>Hunter, A</contributor><contributor>Ao, S.I</contributor><contributor>Hukins, D.W.L</contributor><contributor>Gelman, L</contributor><contributor>Korsunsky, A.M</contributor><creatorcontrib>Deckers, Karl</creatorcontrib><creatorcontrib>Bultheel, Adhemar</creatorcontrib><title>Orthogonal rational functions, associated rational functions and functions of the second kind</title><title>Proceedings of the World Congress on Engineering 2008</title><description>Consider the sequence of poles A = {α_1,α_2, . . .}, and suppose the rational functions φ_j with poles in A form an orthonormal system with respect to a Hermitian positive-definite inner product. Further, assume the φ_j satisfy a three-term recurrence relation. Let the rational function φ^{(1)}_{j\1} with poles in {α_2, α_3, . . .} represent the associated rational function of φ_j of order 1; i.e. the φ_^{(1)}_{j\1} do satisfy the same three-term recurrence relation as the φ_j . In this paper we then give a relation between φ_j and φ^{(1)}_{j\1} in terms of the so-called rational functions of the second kind. Next, under certain conditions on the poles in A, we prove that the φ^{(1)}_{j\1} form an orthonormal system of rational functions with respect to a Hermitian positive-definite inner product. Finally, we give a relation between associated rational functions of different order, independent of whether they form an orthonormal system.</description><issn>2078-0958</issn><isbn>9789881701237</isbn><isbn>9881701236</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>FZOIL</sourceid><recordid>eNqNTr0KwjAYDKhg0b5DNgctJE1r0lkUNxdXCTFJbWlJpF8qPr5VHBwcOt0vx01QXHBRCEE5oSnjUxSlhIuEFLmYoxigvpIs4zllhETocupC5W_eqRZ3KtQfUvZOvylssALwulbBmj8xVs78KF_iUFkMVvvBb2pnlmhWqhZs_MUFWh32590xafrW9g_rpIG70lYOR7N8O9yWVHDCUrZA63FNGZ6Bjd99AaD9Vik</recordid><startdate>200807</startdate><enddate>200807</enddate><creator>Deckers, Karl</creator><creator>Bultheel, Adhemar</creator><general>Newswood Limited, International Association of Engineers</general><scope>FZOIL</scope></search><sort><creationdate>200807</creationdate><title>Orthogonal rational functions, associated rational functions and functions of the second kind</title><author>Deckers, Karl ; Bultheel, Adhemar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_1870323</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Deckers, Karl</creatorcontrib><creatorcontrib>Bultheel, Adhemar</creatorcontrib><collection>Lirias (KU Leuven Association)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Deckers, Karl</au><au>Bultheel, Adhemar</au><au>Hunter, A</au><au>Ao, S.I</au><au>Hukins, D.W.L</au><au>Gelman, L</au><au>Korsunsky, A.M</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Orthogonal rational functions, associated rational functions and functions of the second kind</atitle><btitle>Proceedings of the World Congress on Engineering 2008</btitle><date>2008-07</date><risdate>2008</risdate><volume>2</volume><spage>838</spage><epage>843</epage><pages>838-843</pages><issn>2078-0958</issn><isbn>9789881701237</isbn><isbn>9881701236</isbn><abstract>Consider the sequence of poles A = {α_1,α_2, . . .}, and suppose the rational functions φ_j with poles in A form an orthonormal system with respect to a Hermitian positive-definite inner product. Further, assume the φ_j satisfy a three-term recurrence relation. Let the rational function φ^{(1)}_{j\1} with poles in {α_2, α_3, . . .} represent the associated rational function of φ_j of order 1; i.e. the φ_^{(1)}_{j\1} do satisfy the same three-term recurrence relation as the φ_j . In this paper we then give a relation between φ_j and φ^{(1)}_{j\1} in terms of the so-called rational functions of the second kind. Next, under certain conditions on the poles in A, we prove that the φ^{(1)}_{j\1} form an orthonormal system of rational functions with respect to a Hermitian positive-definite inner product. Finally, we give a relation between associated rational functions of different order, independent of whether they form an orthonormal system.</abstract><cop>London, United Kingdom</cop><pub>Newswood Limited, International Association of Engineers</pub></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2078-0958
ispartof Proceedings of the World Congress on Engineering 2008, 2008, Vol.2, p.838-843
issn 2078-0958
language eng
recordid cdi_kuleuven_dspace_123456789_187032
source Lirias (KU Leuven Association)
title Orthogonal rational functions, associated rational functions and functions of the second kind
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A07%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven_FZOIL&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Orthogonal%20rational%20functions,%20associated%20rational%20functions%20and%20functions%20of%20the%20second%20kind&rft.btitle=Proceedings%20of%20the%20World%20Congress%20on%20Engineering%202008&rft.au=Deckers,%20Karl&rft.date=2008-07&rft.volume=2&rft.spage=838&rft.epage=843&rft.pages=838-843&rft.issn=2078-0958&rft.isbn=9789881701237&rft.isbn_list=9881701236&rft_id=info:doi/&rft_dat=%3Ckuleuven_FZOIL%3E123456789_187032%3C/kuleuven_FZOIL%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true