Class definition in discriminant feature analysis
The aim of discriminant feature analysis techniques in the signal processing of speech recognition systems is to find a feature vector transformation which maps a high dimensional input vector onto a low dimensional vector while retaining a maximum amount of information in the feature vector to disc...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1624 |
---|---|
container_issue | |
container_start_page | 1621 |
container_title | |
container_volume | 3 |
creator | Duchateau, Jacques Demuynck, Kris Van Compernolle, Dirk Wambacq, Patrick |
description | The aim of discriminant feature analysis techniques in the signal processing of speech recognition systems is to find a feature vector transformation which maps a high dimensional input vector onto a low dimensional vector while retaining a maximum amount of information in the feature vector to discriminate between predefined classes.
This paper points out the significance of the definition of the classes in the discriminant feature analysis technique. Three choices for the definition of the classes are investigated: the phonemes, the states in context independent acoustic models and the tied states in context dependent acoustic models.
These choices for the classes were applied to (1) standard LDA (linear discriminant analysis) for reference and to (2) MIDA, an improved, mutual information based discriminant analysis technique. Evaluation of the resulting linear feature transforms on a large vocabulary continuous speech recognition task shows, depending on the technique, the best choice for the classes. |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>kuleuven_FZOIL</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_168386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_168386</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_1683863</originalsourceid><addsrcrecordid>eNqNzLEKwjAQgOGAOGj1HbI5iNCYmqZzUXwA93C0FziMp_QS0bd38QE6_cvHv1Br33a1t42p65UyfQIRPWIkpkxP1sR6JBkmehADZx0RcplQA0P6CslGLSMkwe2_ldpdzrf-eriXhOWNHEZ5wYDBHG1zcq3vgnHeemcrtZ8nQ_5kO__7A34pP3Y</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Class definition in discriminant feature analysis</title><source>Lirias (KU Leuven Association)</source><creator>Duchateau, Jacques ; Demuynck, Kris ; Van Compernolle, Dirk ; Wambacq, Patrick</creator><contributor>Lindberg, Børge ; Dalsgaard, Paul ; Tan, Zheng-Hua ; Benner, Henrik</contributor><creatorcontrib>Duchateau, Jacques ; Demuynck, Kris ; Van Compernolle, Dirk ; Wambacq, Patrick ; Lindberg, Børge ; Dalsgaard, Paul ; Tan, Zheng-Hua ; Benner, Henrik</creatorcontrib><description>The aim of discriminant feature analysis techniques in the signal processing of speech recognition systems is to find a feature vector transformation which maps a high dimensional input vector onto a low dimensional vector while retaining a maximum amount of information in the feature vector to discriminate between predefined classes.
This paper points out the significance of the definition of the classes in the discriminant feature analysis technique. Three choices for the definition of the classes are investigated: the phonemes, the states in context independent acoustic models and the tied states in context dependent acoustic models.
These choices for the classes were applied to (1) standard LDA (linear discriminant analysis) for reference and to (2) MIDA, an improved, mutual information based discriminant analysis technique. Evaluation of the resulting linear feature transforms on a large vocabulary continuous speech recognition task shows, depending on the technique, the best choice for the classes.</description><identifier>ISBN: 8790834100</identifier><identifier>ISBN: 9788790834104</identifier><language>eng</language><publisher>ISCA</publisher><ispartof>Proceedings Eurospeech 2001, 2001, Vol.3, p.1621-1624</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,315,776,27839</link.rule.ids><linktorsrc>$$Uhttps://lirias.kuleuven.be/handle/123456789/168386$$EView_record_in_KU_Leuven_Association$$FView_record_in_$$GKU_Leuven_Association$$Hfree_for_read</linktorsrc></links><search><contributor>Lindberg, Børge</contributor><contributor>Dalsgaard, Paul</contributor><contributor>Tan, Zheng-Hua</contributor><contributor>Benner, Henrik</contributor><creatorcontrib>Duchateau, Jacques</creatorcontrib><creatorcontrib>Demuynck, Kris</creatorcontrib><creatorcontrib>Van Compernolle, Dirk</creatorcontrib><creatorcontrib>Wambacq, Patrick</creatorcontrib><title>Class definition in discriminant feature analysis</title><title>Proceedings Eurospeech 2001</title><description>The aim of discriminant feature analysis techniques in the signal processing of speech recognition systems is to find a feature vector transformation which maps a high dimensional input vector onto a low dimensional vector while retaining a maximum amount of information in the feature vector to discriminate between predefined classes.
This paper points out the significance of the definition of the classes in the discriminant feature analysis technique. Three choices for the definition of the classes are investigated: the phonemes, the states in context independent acoustic models and the tied states in context dependent acoustic models.
These choices for the classes were applied to (1) standard LDA (linear discriminant analysis) for reference and to (2) MIDA, an improved, mutual information based discriminant analysis technique. Evaluation of the resulting linear feature transforms on a large vocabulary continuous speech recognition task shows, depending on the technique, the best choice for the classes.</description><isbn>8790834100</isbn><isbn>9788790834104</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>FZOIL</sourceid><recordid>eNqNzLEKwjAQgOGAOGj1HbI5iNCYmqZzUXwA93C0FziMp_QS0bd38QE6_cvHv1Br33a1t42p65UyfQIRPWIkpkxP1sR6JBkmehADZx0RcplQA0P6CslGLSMkwe2_ldpdzrf-eriXhOWNHEZ5wYDBHG1zcq3vgnHeemcrtZ8nQ_5kO__7A34pP3Y</recordid><startdate>200109</startdate><enddate>200109</enddate><creator>Duchateau, Jacques</creator><creator>Demuynck, Kris</creator><creator>Van Compernolle, Dirk</creator><creator>Wambacq, Patrick</creator><general>ISCA</general><scope>FZOIL</scope></search><sort><creationdate>200109</creationdate><title>Class definition in discriminant feature analysis</title><author>Duchateau, Jacques ; Demuynck, Kris ; Van Compernolle, Dirk ; Wambacq, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_1683863</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Duchateau, Jacques</creatorcontrib><creatorcontrib>Demuynck, Kris</creatorcontrib><creatorcontrib>Van Compernolle, Dirk</creatorcontrib><creatorcontrib>Wambacq, Patrick</creatorcontrib><collection>Lirias (KU Leuven Association)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Duchateau, Jacques</au><au>Demuynck, Kris</au><au>Van Compernolle, Dirk</au><au>Wambacq, Patrick</au><au>Lindberg, Børge</au><au>Dalsgaard, Paul</au><au>Tan, Zheng-Hua</au><au>Benner, Henrik</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Class definition in discriminant feature analysis</atitle><btitle>Proceedings Eurospeech 2001</btitle><date>2001-09</date><risdate>2001</risdate><volume>3</volume><spage>1621</spage><epage>1624</epage><pages>1621-1624</pages><isbn>8790834100</isbn><isbn>9788790834104</isbn><abstract>The aim of discriminant feature analysis techniques in the signal processing of speech recognition systems is to find a feature vector transformation which maps a high dimensional input vector onto a low dimensional vector while retaining a maximum amount of information in the feature vector to discriminate between predefined classes.
This paper points out the significance of the definition of the classes in the discriminant feature analysis technique. Three choices for the definition of the classes are investigated: the phonemes, the states in context independent acoustic models and the tied states in context dependent acoustic models.
These choices for the classes were applied to (1) standard LDA (linear discriminant analysis) for reference and to (2) MIDA, an improved, mutual information based discriminant analysis technique. Evaluation of the resulting linear feature transforms on a large vocabulary continuous speech recognition task shows, depending on the technique, the best choice for the classes.</abstract><pub>ISCA</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 8790834100 |
ispartof | Proceedings Eurospeech 2001, 2001, Vol.3, p.1621-1624 |
issn | |
language | eng |
recordid | cdi_kuleuven_dspace_123456789_168386 |
source | Lirias (KU Leuven Association) |
title | Class definition in discriminant feature analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A29%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven_FZOIL&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Class%20definition%20in%20discriminant%20feature%20analysis&rft.btitle=Proceedings%20Eurospeech%202001&rft.au=Duchateau,%20Jacques&rft.date=2001-09&rft.volume=3&rft.spage=1621&rft.epage=1624&rft.pages=1621-1624&rft.isbn=8790834100&rft.isbn_list=9788790834104&rft_id=info:doi/&rft_dat=%3Ckuleuven_FZOIL%3E123456789_168386%3C/kuleuven_FZOIL%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |