Stabilized lifting steps in noise reduction for nonequispaced samples

This paper discusses wavelet thresholding in smoothing from non-equispaced, noisy data in one dimension. To deal with the irregularity of the grid we use so called second generation wavelets, based on the lifting scheme. We explain that a good numerical condition is an absolute requisite for success...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vanraes, Evelyne, Jansen, Maarten, Bultheel, Adhemar
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 116
container_issue
container_start_page 105
container_title
container_volume 4478
creator Vanraes, Evelyne
Jansen, Maarten
Bultheel, Adhemar
description This paper discusses wavelet thresholding in smoothing from non-equispaced, noisy data in one dimension. To deal with the irregularity of the grid we use so called second generation wavelets, based on the lifting scheme. We explain that a good numerical condition is an absolute requisite for successful thresholding. If this condition is not satisfied the output signal can show an arbitrary bias. We examine the nature and origin of stability problems in second generation wavelet transforms. The investigation concentrates on lifting with interpolating prediction, but the conclusions are extendible. The stability problem is a cumulated effect of the three successive steps in a lifting scheme: split, predict and update. The paper proposes three ways to stabilize the second generation wavelet transform. The first is a change in update and reduces the influence of the previous steps. The second is a change in prediction and operates on the interval boundaries. The third is a change in splitting procedure and concentrates on the irregularity of the data points. Illustrations show that reconstruction from thresholded coefficients with this stabilized second generation wavelet transform leads to smooth and close fits.
format Conference Proceeding
fullrecord <record><control><sourceid>kuleuven_FZOIL</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_133096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_133096</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_1330963</originalsourceid><addsrcrecordid>eNqNjEELgjAYhgcVZOZ_2K1DCNOp285hdK9DNzH9jNWa5jcj-vVJ9AM8vfDwPO-MBEpIJiOVJJGK5Zx4LBYiFDI7L8kK8cZYLFOhPJIfXXnRRn-gpkY3TtsrRQcdUm2pbTUC7aEeKqdbS5u2H5mF56CxK6sxwfLRGcA1WTSlQQj-65PNPj_tDuF9MDC8wBb1LyiimCdpJqQqIs6ZyrhPttPMwr0dn_77BRuVTJ4</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Stabilized lifting steps in noise reduction for nonequispaced samples</title><source>Lirias (KU Leuven Association)</source><creator>Vanraes, Evelyne ; Jansen, Maarten ; Bultheel, Adhemar</creator><contributor>Laine, Andrew F ; Aldroubi, Akram ; Unser, Michael A</contributor><creatorcontrib>Vanraes, Evelyne ; Jansen, Maarten ; Bultheel, Adhemar ; Laine, Andrew F ; Aldroubi, Akram ; Unser, Michael A</creatorcontrib><description>This paper discusses wavelet thresholding in smoothing from non-equispaced, noisy data in one dimension. To deal with the irregularity of the grid we use so called second generation wavelets, based on the lifting scheme. We explain that a good numerical condition is an absolute requisite for successful thresholding. If this condition is not satisfied the output signal can show an arbitrary bias. We examine the nature and origin of stability problems in second generation wavelet transforms. The investigation concentrates on lifting with interpolating prediction, but the conclusions are extendible. The stability problem is a cumulated effect of the three successive steps in a lifting scheme: split, predict and update. The paper proposes three ways to stabilize the second generation wavelet transform. The first is a change in update and reduces the influence of the previous steps. The second is a change in prediction and operates on the interval boundaries. The third is a change in splitting procedure and concentrates on the irregularity of the data points. Illustrations show that reconstruction from thresholded coefficients with this stabilized second generation wavelet transform leads to smooth and close fits.</description><identifier>ISSN: 0277-786X</identifier><identifier>ISBN: 9780819441928</identifier><identifier>ISBN: 0819441929</identifier><language>eng</language><publisher>Bellingham WA: SPIE The International Society for Optical Engineering</publisher><ispartof>Wavelets: Applications in Signal and Image Processing IX, 2001, Vol.4478, p.105-116</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,315,776,4036,4037,27837</link.rule.ids><linktorsrc>$$Uhttps://lirias.kuleuven.be/handle/123456789/133096$$EView_record_in_KU_Leuven_Association$$FView_record_in_$$GKU_Leuven_Association$$Hfree_for_read</linktorsrc></links><search><contributor>Laine, Andrew F</contributor><contributor>Aldroubi, Akram</contributor><contributor>Unser, Michael A</contributor><creatorcontrib>Vanraes, Evelyne</creatorcontrib><creatorcontrib>Jansen, Maarten</creatorcontrib><creatorcontrib>Bultheel, Adhemar</creatorcontrib><title>Stabilized lifting steps in noise reduction for nonequispaced samples</title><title>Wavelets: Applications in Signal and Image Processing IX</title><description>This paper discusses wavelet thresholding in smoothing from non-equispaced, noisy data in one dimension. To deal with the irregularity of the grid we use so called second generation wavelets, based on the lifting scheme. We explain that a good numerical condition is an absolute requisite for successful thresholding. If this condition is not satisfied the output signal can show an arbitrary bias. We examine the nature and origin of stability problems in second generation wavelet transforms. The investigation concentrates on lifting with interpolating prediction, but the conclusions are extendible. The stability problem is a cumulated effect of the three successive steps in a lifting scheme: split, predict and update. The paper proposes three ways to stabilize the second generation wavelet transform. The first is a change in update and reduces the influence of the previous steps. The second is a change in prediction and operates on the interval boundaries. The third is a change in splitting procedure and concentrates on the irregularity of the data points. Illustrations show that reconstruction from thresholded coefficients with this stabilized second generation wavelet transform leads to smooth and close fits.</description><issn>0277-786X</issn><isbn>9780819441928</isbn><isbn>0819441929</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>FZOIL</sourceid><recordid>eNqNjEELgjAYhgcVZOZ_2K1DCNOp285hdK9DNzH9jNWa5jcj-vVJ9AM8vfDwPO-MBEpIJiOVJJGK5Zx4LBYiFDI7L8kK8cZYLFOhPJIfXXnRRn-gpkY3TtsrRQcdUm2pbTUC7aEeKqdbS5u2H5mF56CxK6sxwfLRGcA1WTSlQQj-65PNPj_tDuF9MDC8wBb1LyiimCdpJqQqIs6ZyrhPttPMwr0dn_77BRuVTJ4</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Vanraes, Evelyne</creator><creator>Jansen, Maarten</creator><creator>Bultheel, Adhemar</creator><general>SPIE The International Society for Optical Engineering</general><scope>FZOIL</scope></search><sort><creationdate>2001</creationdate><title>Stabilized lifting steps in noise reduction for nonequispaced samples</title><author>Vanraes, Evelyne ; Jansen, Maarten ; Bultheel, Adhemar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_1330963</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Vanraes, Evelyne</creatorcontrib><creatorcontrib>Jansen, Maarten</creatorcontrib><creatorcontrib>Bultheel, Adhemar</creatorcontrib><collection>Lirias (KU Leuven Association)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vanraes, Evelyne</au><au>Jansen, Maarten</au><au>Bultheel, Adhemar</au><au>Laine, Andrew F</au><au>Aldroubi, Akram</au><au>Unser, Michael A</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Stabilized lifting steps in noise reduction for nonequispaced samples</atitle><btitle>Wavelets: Applications in Signal and Image Processing IX</btitle><date>2001</date><risdate>2001</risdate><volume>4478</volume><spage>105</spage><epage>116</epage><pages>105-116</pages><issn>0277-786X</issn><isbn>9780819441928</isbn><isbn>0819441929</isbn><abstract>This paper discusses wavelet thresholding in smoothing from non-equispaced, noisy data in one dimension. To deal with the irregularity of the grid we use so called second generation wavelets, based on the lifting scheme. We explain that a good numerical condition is an absolute requisite for successful thresholding. If this condition is not satisfied the output signal can show an arbitrary bias. We examine the nature and origin of stability problems in second generation wavelet transforms. The investigation concentrates on lifting with interpolating prediction, but the conclusions are extendible. The stability problem is a cumulated effect of the three successive steps in a lifting scheme: split, predict and update. The paper proposes three ways to stabilize the second generation wavelet transform. The first is a change in update and reduces the influence of the previous steps. The second is a change in prediction and operates on the interval boundaries. The third is a change in splitting procedure and concentrates on the irregularity of the data points. Illustrations show that reconstruction from thresholded coefficients with this stabilized second generation wavelet transform leads to smooth and close fits.</abstract><cop>Bellingham WA</cop><pub>SPIE The International Society for Optical Engineering</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0277-786X
ispartof Wavelets: Applications in Signal and Image Processing IX, 2001, Vol.4478, p.105-116
issn 0277-786X
language eng
recordid cdi_kuleuven_dspace_123456789_133096
source Lirias (KU Leuven Association)
title Stabilized lifting steps in noise reduction for nonequispaced samples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A05%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven_FZOIL&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Stabilized%20lifting%20steps%20in%20noise%20reduction%20for%20nonequispaced%20samples&rft.btitle=Wavelets:%20Applications%20in%20Signal%20and%20Image%20Processing%20IX&rft.au=Vanraes,%20Evelyne&rft.date=2001&rft.volume=4478&rft.spage=105&rft.epage=116&rft.pages=105-116&rft.issn=0277-786X&rft.isbn=9780819441928&rft.isbn_list=0819441929&rft_id=info:doi/&rft_dat=%3Ckuleuven_FZOIL%3E123456789_133096%3C/kuleuven_FZOIL%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true