Learning rules from multisource data for cardiac monitoring

This paper aims at formalizing the concept of learning rules from multisource data in a cardiac monitoring context. Our method has been implemented and evaluated on learning from data describing cardiac behaviors from different viewpoints, here electrocardiograms and arterial blood pressure measures...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence in medicine, proceedings proceedings, 2005, Vol.3581, p.484-493
Hauptverfasser: Fromont, Elisa, Quiniou, R, Cordier, M.O
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 493
container_issue
container_start_page 484
container_title Artificial intelligence in medicine, proceedings
container_volume 3581
creator Fromont, Elisa
Quiniou, R
Cordier, M.O
description This paper aims at formalizing the concept of learning rules from multisource data in a cardiac monitoring context. Our method has been implemented and evaluated on learning from data describing cardiac behaviors from different viewpoints, here electrocardiograms and arterial blood pressure measures. In order to cope with the dimensionality problems of multisource learning, we propose an Inductive Logic Programming method using a two-step strategy. Firstly, rules are learned independently from each sources. Secondly, the learned rules are used to bias a new learning process from the aggregated data. The results show that the the proposed method is much more efficient than learning directly from the aggregated data. Furthermore, it yields rules having better or equal accuracy than rules obtained by monosource learning.
format Article
fullrecord <record><control><sourceid>kuleuven_FZOIL</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_125160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_125160</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_1251603</originalsourceid><addsrcrecordid>eNqVjL0KwjAURjMoWK3vcDcHKaRJfyyOojg4updLmkq0TeQmER_fDj6ATucbzndmLOGSi6ypC7lgS-_vnHNRNyJh-4tGssbegOKgPfTkRhjjEIx3kZSGDgNC7wgUUmdQweisCY6mS8rmPQ5er79csc3peD2cs8eUii9t284_Uek2F7Ioq3rXTKvMKy7_Mbe_mW14B_kBmW9Fgg</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Learning rules from multisource data for cardiac monitoring</title><source>Lirias (KU Leuven Association)</source><creator>Fromont, Elisa ; Quiniou, R ; Cordier, M.O</creator><contributor>Keravnou, E ; Miksch, S ; Hunter, J</contributor><creatorcontrib>Fromont, Elisa ; Quiniou, R ; Cordier, M.O ; Keravnou, E ; Miksch, S ; Hunter, J</creatorcontrib><description>This paper aims at formalizing the concept of learning rules from multisource data in a cardiac monitoring context. Our method has been implemented and evaluated on learning from data describing cardiac behaviors from different viewpoints, here electrocardiograms and arterial blood pressure measures. In order to cope with the dimensionality problems of multisource learning, we propose an Inductive Logic Programming method using a two-step strategy. Firstly, rules are learned independently from each sources. Secondly, the learned rules are used to bias a new learning process from the aggregated data. The results show that the the proposed method is much more efficient than learning directly from the aggregated data. Furthermore, it yields rules having better or equal accuracy than rules obtained by monosource learning.</description><identifier>ISSN: 0302-9743</identifier><language>eng</language><publisher>Springer-verlag berlin</publisher><ispartof>Artificial intelligence in medicine, proceedings, 2005, Vol.3581, p.484-493</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,780,27860</link.rule.ids><linktorsrc>$$Uhttps://lirias.kuleuven.be/handle/123456789/125160$$EView_record_in_KU_Leuven_Association$$FView_record_in_$$GKU_Leuven_Association$$Hfree_for_read</linktorsrc></links><search><contributor>Keravnou, E</contributor><contributor>Miksch, S</contributor><contributor>Hunter, J</contributor><creatorcontrib>Fromont, Elisa</creatorcontrib><creatorcontrib>Quiniou, R</creatorcontrib><creatorcontrib>Cordier, M.O</creatorcontrib><title>Learning rules from multisource data for cardiac monitoring</title><title>Artificial intelligence in medicine, proceedings</title><description>This paper aims at formalizing the concept of learning rules from multisource data in a cardiac monitoring context. Our method has been implemented and evaluated on learning from data describing cardiac behaviors from different viewpoints, here electrocardiograms and arterial blood pressure measures. In order to cope with the dimensionality problems of multisource learning, we propose an Inductive Logic Programming method using a two-step strategy. Firstly, rules are learned independently from each sources. Secondly, the learned rules are used to bias a new learning process from the aggregated data. The results show that the the proposed method is much more efficient than learning directly from the aggregated data. Furthermore, it yields rules having better or equal accuracy than rules obtained by monosource learning.</description><issn>0302-9743</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVjL0KwjAURjMoWK3vcDcHKaRJfyyOojg4updLmkq0TeQmER_fDj6ATucbzndmLOGSi6ypC7lgS-_vnHNRNyJh-4tGssbegOKgPfTkRhjjEIx3kZSGDgNC7wgUUmdQweisCY6mS8rmPQ5er79csc3peD2cs8eUii9t284_Uek2F7Ioq3rXTKvMKy7_Mbe_mW14B_kBmW9Fgg</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Fromont, Elisa</creator><creator>Quiniou, R</creator><creator>Cordier, M.O</creator><general>Springer-verlag berlin</general><scope>FZOIL</scope></search><sort><creationdate>2005</creationdate><title>Learning rules from multisource data for cardiac monitoring</title><author>Fromont, Elisa ; Quiniou, R ; Cordier, M.O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_1251603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fromont, Elisa</creatorcontrib><creatorcontrib>Quiniou, R</creatorcontrib><creatorcontrib>Cordier, M.O</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>Artificial intelligence in medicine, proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fromont, Elisa</au><au>Quiniou, R</au><au>Cordier, M.O</au><au>Keravnou, E</au><au>Miksch, S</au><au>Hunter, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning rules from multisource data for cardiac monitoring</atitle><jtitle>Artificial intelligence in medicine, proceedings</jtitle><date>2005</date><risdate>2005</risdate><volume>3581</volume><spage>484</spage><epage>493</epage><pages>484-493</pages><issn>0302-9743</issn><abstract>This paper aims at formalizing the concept of learning rules from multisource data in a cardiac monitoring context. Our method has been implemented and evaluated on learning from data describing cardiac behaviors from different viewpoints, here electrocardiograms and arterial blood pressure measures. In order to cope with the dimensionality problems of multisource learning, we propose an Inductive Logic Programming method using a two-step strategy. Firstly, rules are learned independently from each sources. Secondly, the learned rules are used to bias a new learning process from the aggregated data. The results show that the the proposed method is much more efficient than learning directly from the aggregated data. Furthermore, it yields rules having better or equal accuracy than rules obtained by monosource learning.</abstract><pub>Springer-verlag berlin</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0302-9743
ispartof Artificial intelligence in medicine, proceedings, 2005, Vol.3581, p.484-493
issn 0302-9743
language eng
recordid cdi_kuleuven_dspace_123456789_125160
source Lirias (KU Leuven Association)
title Learning rules from multisource data for cardiac monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A04%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven_FZOIL&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20rules%20from%20multisource%20data%20for%20cardiac%20monitoring&rft.jtitle=Artificial%20intelligence%20in%20medicine,%20proceedings&rft.au=Fromont,%20Elisa&rft.date=2005&rft.volume=3581&rft.spage=484&rft.epage=493&rft.pages=484-493&rft.issn=0302-9743&rft_id=info:doi/&rft_dat=%3Ckuleuven_FZOIL%3E123456789_125160%3C/kuleuven_FZOIL%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true