Efficient Recognition of Easily-confused Chinese Herbal Slices Images Using Enhanced ResNeSt

Chinese herbal slices (CHS) automated recognition based on computer vision plays a critical role in the practical application of intelligent Chinese medicine. Due to the complexity and similarity of herbal images, identifying Chinese herbal slices is still a challenging task. Especially, easily-conf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:KSII transactions on Internet and information systems 2024-08, Vol.18 (8), p.2103-2118
Hauptverfasser: Qi Zhang, Jinfeng Ou, Huaying Zhou
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chinese herbal slices (CHS) automated recognition based on computer vision plays a critical role in the practical application of intelligent Chinese medicine. Due to the complexity and similarity of herbal images, identifying Chinese herbal slices is still a challenging task. Especially, easily-confused CHS have higher inter-class and intra-class complexity and similarity issues, the existing deep learning models are less adaptable to identify them efficiently. To comprehensively address these problems, a novel tiny easily-confused CHS dataset has been built firstly, which includes six pairs of twelve categories with about 2395 samples. Furthermore, we propose a ResNeSt-CHS model that combines multilevel perception fusion (MPF) and perceptive sparse fusion (PSF) blocks for efficiently recognizing easily-confused CHS images. To verify the superiority of the ResNeSt-CHS and the effectiveness of our dataset, experiments have been employed, validating that the ResNeSt-CHS is optimal for easily-confused CHS recognition, with 2.1% improvement of the original ResNeSt model. Additionally, the results indicate that ResNeSt-CHS is applied on a relatively small-scale dataset yet high accuracy. This model has obtained state-of-the-art easily-confused CHS classification performance, with accuracy of 90.8%, far beyond other models (EfficientNet, Transformer, and ResNeSt, etc) in terms of evaluation criteria.
ISSN:1976-7277
1976-7277