REALIZING A FAKE PROJECTIVE PLANE AS A DEGREE 25 SURFACE IN ℙ 5

Fake projective planes are smooth complex surfaces of general type with Betti numbers equal to that of the usual projective plane. Recent explicit constructions of fake projective planes embed them via their bicanonical embedding in ℙ9. In this paper, we study Keum's fake projective plane (a =...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Mathematical Society 2024, Vol.61 (4), p.683-692
Hauptverfasser: Lev Borisov, Zachary Lihn
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 692
container_issue 4
container_start_page 683
container_title Journal of the Korean Mathematical Society
container_volume 61
creator Lev Borisov
Zachary Lihn
description Fake projective planes are smooth complex surfaces of general type with Betti numbers equal to that of the usual projective plane. Recent explicit constructions of fake projective planes embed them via their bicanonical embedding in ℙ9. In this paper, we study Keum's fake projective plane (a = 7, p = 2, {7}, D327) and use the equations of [1] to construct an embedding of fake projective plane in ℙ5. We also simplify the 84 cubic equations defining the fake projective plane in ℙ9.
format Article
fullrecord <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO202420772004201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO202420772004201</sourcerecordid><originalsourceid>FETCH-kisti_ndsl_JAKO2024207720042013</originalsourceid><addsrcrecordid>eNpjYeA0MDYw0bW0NDThYOAtLs5MMjA0sjAyMTE142RwDHJ19PGM8vRzV3BUcHP0dlUICPL3cnUO8QwDMn0c_VwVHIOBUi6u7kGurgpGpgrBoUFujs6uCp5-Co9aZiqY8jCwpiXmFKfyQmluBlU31xBnD93szOKSzPi8lOKceC9Hb38jAyMTIwNzcyMDAyBtaEysOgCmVzDc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>REALIZING A FAKE PROJECTIVE PLANE AS A DEGREE 25 SURFACE IN ℙ 5</title><source>EZB Electronic Journals Library</source><creator>Lev Borisov ; Zachary Lihn</creator><creatorcontrib>Lev Borisov ; Zachary Lihn</creatorcontrib><description>Fake projective planes are smooth complex surfaces of general type with Betti numbers equal to that of the usual projective plane. Recent explicit constructions of fake projective planes embed them via their bicanonical embedding in ℙ9. In this paper, we study Keum's fake projective plane (a = 7, p = 2, {7}, D327) and use the equations of [1] to construct an embedding of fake projective plane in ℙ5. We also simplify the 84 cubic equations defining the fake projective plane in ℙ9.</description><identifier>ISSN: 0304-9914</identifier><language>kor</language><ispartof>Journal of the Korean Mathematical Society, 2024, Vol.61 (4), p.683-692</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010</link.rule.ids></links><search><creatorcontrib>Lev Borisov</creatorcontrib><creatorcontrib>Zachary Lihn</creatorcontrib><title>REALIZING A FAKE PROJECTIVE PLANE AS A DEGREE 25 SURFACE IN ℙ 5</title><title>Journal of the Korean Mathematical Society</title><addtitle>대한수학회지</addtitle><description>Fake projective planes are smooth complex surfaces of general type with Betti numbers equal to that of the usual projective plane. Recent explicit constructions of fake projective planes embed them via their bicanonical embedding in ℙ9. In this paper, we study Keum's fake projective plane (a = 7, p = 2, {7}, D327) and use the equations of [1] to construct an embedding of fake projective plane in ℙ5. We also simplify the 84 cubic equations defining the fake projective plane in ℙ9.</description><issn>0304-9914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNpjYeA0MDYw0bW0NDThYOAtLs5MMjA0sjAyMTE142RwDHJ19PGM8vRzV3BUcHP0dlUICPL3cnUO8QwDMn0c_VwVHIOBUi6u7kGurgpGpgrBoUFujs6uCp5-Co9aZiqY8jCwpiXmFKfyQmluBlU31xBnD93szOKSzPi8lOKceC9Hb38jAyMTIwNzcyMDAyBtaEysOgCmVzDc</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Lev Borisov</creator><creator>Zachary Lihn</creator><scope>JDI</scope></search><sort><creationdate>2024</creationdate><title>REALIZING A FAKE PROJECTIVE PLANE AS A DEGREE 25 SURFACE IN ℙ 5</title><author>Lev Borisov ; Zachary Lihn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kisti_ndsl_JAKO2024207720042013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lev Borisov</creatorcontrib><creatorcontrib>Zachary Lihn</creatorcontrib><collection>KoreaScience</collection><jtitle>Journal of the Korean Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lev Borisov</au><au>Zachary Lihn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>REALIZING A FAKE PROJECTIVE PLANE AS A DEGREE 25 SURFACE IN ℙ 5</atitle><jtitle>Journal of the Korean Mathematical Society</jtitle><addtitle>대한수학회지</addtitle><date>2024</date><risdate>2024</risdate><volume>61</volume><issue>4</issue><spage>683</spage><epage>692</epage><pages>683-692</pages><issn>0304-9914</issn><abstract>Fake projective planes are smooth complex surfaces of general type with Betti numbers equal to that of the usual projective plane. Recent explicit constructions of fake projective planes embed them via their bicanonical embedding in ℙ9. In this paper, we study Keum's fake projective plane (a = 7, p = 2, {7}, D327) and use the equations of [1] to construct an embedding of fake projective plane in ℙ5. We also simplify the 84 cubic equations defining the fake projective plane in ℙ9.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-9914
ispartof Journal of the Korean Mathematical Society, 2024, Vol.61 (4), p.683-692
issn 0304-9914
language kor
recordid cdi_kisti_ndsl_JAKO202420772004201
source EZB Electronic Journals Library
title REALIZING A FAKE PROJECTIVE PLANE AS A DEGREE 25 SURFACE IN ℙ 5
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A25%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=REALIZING%20A%20FAKE%20PROJECTIVE%20PLANE%20AS%20A%20DEGREE%2025%20SURFACE%20IN%20%E2%84%99%205&rft.jtitle=Journal%20of%20the%20Korean%20Mathematical%20Society&rft.au=Lev%20Borisov&rft.date=2024&rft.volume=61&rft.issue=4&rft.spage=683&rft.epage=692&rft.pages=683-692&rft.issn=0304-9914&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO202420772004201%3C/kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true