An elaboration on sample size determination for correlations based on effect sizes and confidence interval width: a guide for researchers
Objectives: This paper aims to serve as a useful guide for sample size determination for various correlation analyses that are based on effect sizes and confidence interval width. Materials and Methods: Sample size determinations are calculated for Pearson's correlation, Spearman's rank co...
Gespeichert in:
Veröffentlicht in: | Restorative dentistry & endodontics 2024, Vol.49 (2), p.21.1-21.8 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objectives: This paper aims to serve as a useful guide for sample size determination for various correlation analyses that are based on effect sizes and confidence interval width. Materials and Methods: Sample size determinations are calculated for Pearson's correlation, Spearman's rank correlation, and Kendall's Tau-b correlation. Examples of sample size statements and their justification are also included. Results: Using the same effect sizes, there are differences between the sample size determination of the 3 statistical tests. Based on an empirical calculation, a minimum sample size of 149 is usually adequate for performing both parametric and non-parametric correlation analysis to determine at least a moderate to an excellent degree of correlation with acceptable confidence interval width. Conclusions: Determining data assumption(s) is one of the challenges to offering a valid technique to estimate the required sample size for correlation analyses. Sample size tables are provided and these will help researchers to estimate a minimum sample size requirement based on correlation analyses. |
---|---|
ISSN: | 2234-7658 2234-7666 |