SOME FACTORIZATION PROPERTIES OF IDEALIZATION IN COMMUTATIVE RINGS WITH ZERO DIVISORS
We study some factorization properties of the idealization R(+)M of a module M in a commutative ring R which is not necessarily a domain. We show that R(+)M is ACCP if and only if R is ACCP and M satisfies ACC on its cyclic submodules. We give an example to show that the BF property is not necessari...
Gespeichert in:
Veröffentlicht in: | Taehan Suhakhoe hoebo 2024, Vol.61 (2), p.291-299 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study some factorization properties of the idealization R(+)M of a module M in a commutative ring R which is not necessarily a domain. We show that R(+)M is ACCP if and only if R is ACCP and M satisfies ACC on its cyclic submodules. We give an example to show that the BF property is not necessarily preserved in idealization, and give some conditions under which R(+)M is a BFR. We also characterize the idealization rings which are UFRs. |
---|---|
ISSN: | 1015-8634 |