Edge Computing Task Offloading of Internet of Vehicles Based on Improved MADDPG Algorithm
Edge computing is frequently employed in the Internet of Vehicles, although the computation and communication capabilities of roadside units with edge servers are limited. As a result, to perform distributed machine learning on resource-limited MEC systems, resources have to be allocated sensibly. T...
Gespeichert in:
Veröffentlicht in: | KSII transactions on Internet and information systems 2024, Vol.18 (2), p.327-347 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 347 |
---|---|
container_issue | 2 |
container_start_page | 327 |
container_title | KSII transactions on Internet and information systems |
container_volume | 18 |
creator | Ziyang Jin Yijun Wang Jingying Lv |
description | Edge computing is frequently employed in the Internet of Vehicles, although the computation and communication capabilities of roadside units with edge servers are limited. As a result, to perform distributed machine learning on resource-limited MEC systems, resources have to be allocated sensibly. This paper presents an Improved MADDPG algorithm to overcome the current IoV concerns of high delay and limited offloading utility. Firstly, we employ the MADDPG algorithm for task offloading. Secondly, the edge server aggregates the updated model and modifies the aggregation model parameters to achieve optimal policy learning. Finally, the new approach is contrasted with current reinforcement learning techniques. The simulation results show that compared with MADDPG and MAA2C algorithms, our algorithm improves offloading utility by 2% and 9%, and reduces delay by 29.6%. |
format | Article |
fullrecord | <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO202409557608235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO202409557608235</sourcerecordid><originalsourceid>FETCH-kisti_ndsl_JAKO2024095576082353</originalsourceid><addsrcrecordid>eNqNik0LgjAAQEcQJOV_2KWjoPNjejS1sgg7SNBJLDcdzk3c6veX0A_o9N6DtwCGE-HAwgjjFTCVYg_bQSEKvDA0wD1rWgITOYwvzUQLy1r1sKCUy7qZW1KYC00mQfTsN9KxJycK7mpFGigFzIdxku-vX-I0vR5gzFs5Md0NG7CkNVfE_HENtvusTI5Wz5RmlWgUr07xuUA28uzI93Fgh8j13X-_DwSAP0o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Edge Computing Task Offloading of Internet of Vehicles Based on Improved MADDPG Algorithm</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ziyang Jin ; Yijun Wang ; Jingying Lv</creator><creatorcontrib>Ziyang Jin ; Yijun Wang ; Jingying Lv</creatorcontrib><description>Edge computing is frequently employed in the Internet of Vehicles, although the computation and communication capabilities of roadside units with edge servers are limited. As a result, to perform distributed machine learning on resource-limited MEC systems, resources have to be allocated sensibly. This paper presents an Improved MADDPG algorithm to overcome the current IoV concerns of high delay and limited offloading utility. Firstly, we employ the MADDPG algorithm for task offloading. Secondly, the edge server aggregates the updated model and modifies the aggregation model parameters to achieve optimal policy learning. Finally, the new approach is contrasted with current reinforcement learning techniques. The simulation results show that compared with MADDPG and MAA2C algorithms, our algorithm improves offloading utility by 2% and 9%, and reduces delay by 29.6%.</description><identifier>EISSN: 1976-7277</identifier><language>kor</language><ispartof>KSII transactions on Internet and information systems, 2024, Vol.18 (2), p.327-347</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,4025</link.rule.ids></links><search><creatorcontrib>Ziyang Jin</creatorcontrib><creatorcontrib>Yijun Wang</creatorcontrib><creatorcontrib>Jingying Lv</creatorcontrib><title>Edge Computing Task Offloading of Internet of Vehicles Based on Improved MADDPG Algorithm</title><title>KSII transactions on Internet and information systems</title><addtitle>KSII Transactions on internet and information systems : TIIS</addtitle><description>Edge computing is frequently employed in the Internet of Vehicles, although the computation and communication capabilities of roadside units with edge servers are limited. As a result, to perform distributed machine learning on resource-limited MEC systems, resources have to be allocated sensibly. This paper presents an Improved MADDPG algorithm to overcome the current IoV concerns of high delay and limited offloading utility. Firstly, we employ the MADDPG algorithm for task offloading. Secondly, the edge server aggregates the updated model and modifies the aggregation model parameters to achieve optimal policy learning. Finally, the new approach is contrasted with current reinforcement learning techniques. The simulation results show that compared with MADDPG and MAA2C algorithms, our algorithm improves offloading utility by 2% and 9%, and reduces delay by 29.6%.</description><issn>1976-7277</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNqNik0LgjAAQEcQJOV_2KWjoPNjejS1sgg7SNBJLDcdzk3c6veX0A_o9N6DtwCGE-HAwgjjFTCVYg_bQSEKvDA0wD1rWgITOYwvzUQLy1r1sKCUy7qZW1KYC00mQfTsN9KxJycK7mpFGigFzIdxku-vX-I0vR5gzFs5Md0NG7CkNVfE_HENtvusTI5Wz5RmlWgUr07xuUA28uzI93Fgh8j13X-_DwSAP0o</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ziyang Jin</creator><creator>Yijun Wang</creator><creator>Jingying Lv</creator><scope>JDI</scope></search><sort><creationdate>2024</creationdate><title>Edge Computing Task Offloading of Internet of Vehicles Based on Improved MADDPG Algorithm</title><author>Ziyang Jin ; Yijun Wang ; Jingying Lv</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kisti_ndsl_JAKO2024095576082353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ziyang Jin</creatorcontrib><creatorcontrib>Yijun Wang</creatorcontrib><creatorcontrib>Jingying Lv</creatorcontrib><collection>KoreaScience</collection><jtitle>KSII transactions on Internet and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ziyang Jin</au><au>Yijun Wang</au><au>Jingying Lv</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge Computing Task Offloading of Internet of Vehicles Based on Improved MADDPG Algorithm</atitle><jtitle>KSII transactions on Internet and information systems</jtitle><addtitle>KSII Transactions on internet and information systems : TIIS</addtitle><date>2024</date><risdate>2024</risdate><volume>18</volume><issue>2</issue><spage>327</spage><epage>347</epage><pages>327-347</pages><eissn>1976-7277</eissn><abstract>Edge computing is frequently employed in the Internet of Vehicles, although the computation and communication capabilities of roadside units with edge servers are limited. As a result, to perform distributed machine learning on resource-limited MEC systems, resources have to be allocated sensibly. This paper presents an Improved MADDPG algorithm to overcome the current IoV concerns of high delay and limited offloading utility. Firstly, we employ the MADDPG algorithm for task offloading. Secondly, the edge server aggregates the updated model and modifies the aggregation model parameters to achieve optimal policy learning. Finally, the new approach is contrasted with current reinforcement learning techniques. The simulation results show that compared with MADDPG and MAA2C algorithms, our algorithm improves offloading utility by 2% and 9%, and reduces delay by 29.6%.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1976-7277 |
ispartof | KSII transactions on Internet and information systems, 2024, Vol.18 (2), p.327-347 |
issn | 1976-7277 |
language | kor |
recordid | cdi_kisti_ndsl_JAKO202409557608235 |
source | EZB-FREE-00999 freely available EZB journals |
title | Edge Computing Task Offloading of Internet of Vehicles Based on Improved MADDPG Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T19%3A40%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge%20Computing%20Task%20Offloading%20of%20Internet%20of%20Vehicles%20Based%20on%20Improved%20MADDPG%20Algorithm&rft.jtitle=KSII%20transactions%20on%20Internet%20and%20information%20systems&rft.au=Ziyang%20Jin&rft.date=2024&rft.volume=18&rft.issue=2&rft.spage=327&rft.epage=347&rft.pages=327-347&rft.eissn=1976-7277&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO202409557608235%3C/kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |