Edge Computing Task Offloading of Internet of Vehicles Based on Improved MADDPG Algorithm

Edge computing is frequently employed in the Internet of Vehicles, although the computation and communication capabilities of roadside units with edge servers are limited. As a result, to perform distributed machine learning on resource-limited MEC systems, resources have to be allocated sensibly. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:KSII transactions on Internet and information systems 2024, Vol.18 (2), p.327-347
Hauptverfasser: Ziyang Jin, Yijun Wang, Jingying Lv
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 347
container_issue 2
container_start_page 327
container_title KSII transactions on Internet and information systems
container_volume 18
creator Ziyang Jin
Yijun Wang
Jingying Lv
description Edge computing is frequently employed in the Internet of Vehicles, although the computation and communication capabilities of roadside units with edge servers are limited. As a result, to perform distributed machine learning on resource-limited MEC systems, resources have to be allocated sensibly. This paper presents an Improved MADDPG algorithm to overcome the current IoV concerns of high delay and limited offloading utility. Firstly, we employ the MADDPG algorithm for task offloading. Secondly, the edge server aggregates the updated model and modifies the aggregation model parameters to achieve optimal policy learning. Finally, the new approach is contrasted with current reinforcement learning techniques. The simulation results show that compared with MADDPG and MAA2C algorithms, our algorithm improves offloading utility by 2% and 9%, and reduces delay by 29.6%.
format Article
fullrecord <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO202409557608235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO202409557608235</sourcerecordid><originalsourceid>FETCH-kisti_ndsl_JAKO2024095576082353</originalsourceid><addsrcrecordid>eNqNik0LgjAAQEcQJOV_2KWjoPNjejS1sgg7SNBJLDcdzk3c6veX0A_o9N6DtwCGE-HAwgjjFTCVYg_bQSEKvDA0wD1rWgITOYwvzUQLy1r1sKCUy7qZW1KYC00mQfTsN9KxJycK7mpFGigFzIdxku-vX-I0vR5gzFs5Md0NG7CkNVfE_HENtvusTI5Wz5RmlWgUr07xuUA28uzI93Fgh8j13X-_DwSAP0o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Edge Computing Task Offloading of Internet of Vehicles Based on Improved MADDPG Algorithm</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ziyang Jin ; Yijun Wang ; Jingying Lv</creator><creatorcontrib>Ziyang Jin ; Yijun Wang ; Jingying Lv</creatorcontrib><description>Edge computing is frequently employed in the Internet of Vehicles, although the computation and communication capabilities of roadside units with edge servers are limited. As a result, to perform distributed machine learning on resource-limited MEC systems, resources have to be allocated sensibly. This paper presents an Improved MADDPG algorithm to overcome the current IoV concerns of high delay and limited offloading utility. Firstly, we employ the MADDPG algorithm for task offloading. Secondly, the edge server aggregates the updated model and modifies the aggregation model parameters to achieve optimal policy learning. Finally, the new approach is contrasted with current reinforcement learning techniques. The simulation results show that compared with MADDPG and MAA2C algorithms, our algorithm improves offloading utility by 2% and 9%, and reduces delay by 29.6%.</description><identifier>EISSN: 1976-7277</identifier><language>kor</language><ispartof>KSII transactions on Internet and information systems, 2024, Vol.18 (2), p.327-347</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,4025</link.rule.ids></links><search><creatorcontrib>Ziyang Jin</creatorcontrib><creatorcontrib>Yijun Wang</creatorcontrib><creatorcontrib>Jingying Lv</creatorcontrib><title>Edge Computing Task Offloading of Internet of Vehicles Based on Improved MADDPG Algorithm</title><title>KSII transactions on Internet and information systems</title><addtitle>KSII Transactions on internet and information systems : TIIS</addtitle><description>Edge computing is frequently employed in the Internet of Vehicles, although the computation and communication capabilities of roadside units with edge servers are limited. As a result, to perform distributed machine learning on resource-limited MEC systems, resources have to be allocated sensibly. This paper presents an Improved MADDPG algorithm to overcome the current IoV concerns of high delay and limited offloading utility. Firstly, we employ the MADDPG algorithm for task offloading. Secondly, the edge server aggregates the updated model and modifies the aggregation model parameters to achieve optimal policy learning. Finally, the new approach is contrasted with current reinforcement learning techniques. The simulation results show that compared with MADDPG and MAA2C algorithms, our algorithm improves offloading utility by 2% and 9%, and reduces delay by 29.6%.</description><issn>1976-7277</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNqNik0LgjAAQEcQJOV_2KWjoPNjejS1sgg7SNBJLDcdzk3c6veX0A_o9N6DtwCGE-HAwgjjFTCVYg_bQSEKvDA0wD1rWgITOYwvzUQLy1r1sKCUy7qZW1KYC00mQfTsN9KxJycK7mpFGigFzIdxku-vX-I0vR5gzFs5Md0NG7CkNVfE_HENtvusTI5Wz5RmlWgUr07xuUA28uzI93Fgh8j13X-_DwSAP0o</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ziyang Jin</creator><creator>Yijun Wang</creator><creator>Jingying Lv</creator><scope>JDI</scope></search><sort><creationdate>2024</creationdate><title>Edge Computing Task Offloading of Internet of Vehicles Based on Improved MADDPG Algorithm</title><author>Ziyang Jin ; Yijun Wang ; Jingying Lv</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kisti_ndsl_JAKO2024095576082353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ziyang Jin</creatorcontrib><creatorcontrib>Yijun Wang</creatorcontrib><creatorcontrib>Jingying Lv</creatorcontrib><collection>KoreaScience</collection><jtitle>KSII transactions on Internet and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ziyang Jin</au><au>Yijun Wang</au><au>Jingying Lv</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge Computing Task Offloading of Internet of Vehicles Based on Improved MADDPG Algorithm</atitle><jtitle>KSII transactions on Internet and information systems</jtitle><addtitle>KSII Transactions on internet and information systems : TIIS</addtitle><date>2024</date><risdate>2024</risdate><volume>18</volume><issue>2</issue><spage>327</spage><epage>347</epage><pages>327-347</pages><eissn>1976-7277</eissn><abstract>Edge computing is frequently employed in the Internet of Vehicles, although the computation and communication capabilities of roadside units with edge servers are limited. As a result, to perform distributed machine learning on resource-limited MEC systems, resources have to be allocated sensibly. This paper presents an Improved MADDPG algorithm to overcome the current IoV concerns of high delay and limited offloading utility. Firstly, we employ the MADDPG algorithm for task offloading. Secondly, the edge server aggregates the updated model and modifies the aggregation model parameters to achieve optimal policy learning. Finally, the new approach is contrasted with current reinforcement learning techniques. The simulation results show that compared with MADDPG and MAA2C algorithms, our algorithm improves offloading utility by 2% and 9%, and reduces delay by 29.6%.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 1976-7277
ispartof KSII transactions on Internet and information systems, 2024, Vol.18 (2), p.327-347
issn 1976-7277
language kor
recordid cdi_kisti_ndsl_JAKO202409557608235
source EZB-FREE-00999 freely available EZB journals
title Edge Computing Task Offloading of Internet of Vehicles Based on Improved MADDPG Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T19%3A40%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge%20Computing%20Task%20Offloading%20of%20Internet%20of%20Vehicles%20Based%20on%20Improved%20MADDPG%20Algorithm&rft.jtitle=KSII%20transactions%20on%20Internet%20and%20information%20systems&rft.au=Ziyang%20Jin&rft.date=2024&rft.volume=18&rft.issue=2&rft.spage=327&rft.epage=347&rft.pages=327-347&rft.eissn=1976-7277&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO202409557608235%3C/kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true