CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONDITIONAL CONVOLUTION PRODUCT ASSOCIATED WITH INFINITE DIMENSIONAL CONDITIONING FUNCTION

In this paper, we use an infinite dimensional conditioning function to define a conditional Fourier-Feynman transform (CFFT) and a conditional convolution product (CCP) on the Wiener space. We establish the existences of the CFFT and the CCP for bounded functions which form a Banach algebra. We then...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taehan Suhakhoe hoebo 2023, Vol.60 (5), p.1221-1235
Hauptverfasser: Jae Gil Choi, Sang Kil Shim
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1235
container_issue 5
container_start_page 1221
container_title Taehan Suhakhoe hoebo
container_volume 60
creator Jae Gil Choi
Sang Kil Shim
description In this paper, we use an infinite dimensional conditioning function to define a conditional Fourier-Feynman transform (CFFT) and a conditional convolution product (CCP) on the Wiener space. We establish the existences of the CFFT and the CCP for bounded functions which form a Banach algebra. We then provide fundamental relationships between the CFFTs and the CCPs.
format Article
fullrecord <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO202328953565865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO202328953565865</sourcerecordid><originalsourceid>FETCH-kisti_ndsl_JAKO2023289535658653</originalsourceid><addsrcrecordid>eNqNjLsKwkAURLdQ8PkPt7EMxMQNsVz2oVeTu7LZKFYiqOADm_UT_HAVRSyt5gycmQZrD-Mhj_IsHbVYJ4RTHI94Ms7a7C4tKfRoSRRgbO1Qu8joNZWCwDtBlbGuBEEKfs0nL21RvxosnFW19CCqykoUXitYoZ8CkkFCr0Fhqan6Dt8nSBMwNckX91jzsL2Eff-TXTYw2stpdD6G23Fz3YXLZibmNomTNMnHPOUZzzOe_us9ADU5Q9Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONDITIONAL CONVOLUTION PRODUCT ASSOCIATED WITH INFINITE DIMENSIONAL CONDITIONING FUNCTION</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jae Gil Choi ; Sang Kil Shim</creator><creatorcontrib>Jae Gil Choi ; Sang Kil Shim</creatorcontrib><description>In this paper, we use an infinite dimensional conditioning function to define a conditional Fourier-Feynman transform (CFFT) and a conditional convolution product (CCP) on the Wiener space. We establish the existences of the CFFT and the CCP for bounded functions which form a Banach algebra. We then provide fundamental relationships between the CFFTs and the CCPs.</description><identifier>ISSN: 1015-8634</identifier><language>kor</language><ispartof>Taehan Suhakhoe hoebo, 2023, Vol.60 (5), p.1221-1235</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010</link.rule.ids></links><search><creatorcontrib>Jae Gil Choi</creatorcontrib><creatorcontrib>Sang Kil Shim</creatorcontrib><title>CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONDITIONAL CONVOLUTION PRODUCT ASSOCIATED WITH INFINITE DIMENSIONAL CONDITIONING FUNCTION</title><title>Taehan Suhakhoe hoebo</title><addtitle>대한수학회보</addtitle><description>In this paper, we use an infinite dimensional conditioning function to define a conditional Fourier-Feynman transform (CFFT) and a conditional convolution product (CCP) on the Wiener space. We establish the existences of the CFFT and the CCP for bounded functions which form a Banach algebra. We then provide fundamental relationships between the CFFTs and the CCPs.</description><issn>1015-8634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNqNjLsKwkAURLdQ8PkPt7EMxMQNsVz2oVeTu7LZKFYiqOADm_UT_HAVRSyt5gycmQZrD-Mhj_IsHbVYJ4RTHI94Ms7a7C4tKfRoSRRgbO1Qu8joNZWCwDtBlbGuBEEKfs0nL21RvxosnFW19CCqykoUXitYoZ8CkkFCr0Fhqan6Dt8nSBMwNckX91jzsL2Eff-TXTYw2stpdD6G23Fz3YXLZibmNomTNMnHPOUZzzOe_us9ADU5Q9Y</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Jae Gil Choi</creator><creator>Sang Kil Shim</creator><scope>JDI</scope></search><sort><creationdate>2023</creationdate><title>CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONDITIONAL CONVOLUTION PRODUCT ASSOCIATED WITH INFINITE DIMENSIONAL CONDITIONING FUNCTION</title><author>Jae Gil Choi ; Sang Kil Shim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kisti_ndsl_JAKO2023289535658653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jae Gil Choi</creatorcontrib><creatorcontrib>Sang Kil Shim</creatorcontrib><collection>KoreaScience</collection><jtitle>Taehan Suhakhoe hoebo</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jae Gil Choi</au><au>Sang Kil Shim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONDITIONAL CONVOLUTION PRODUCT ASSOCIATED WITH INFINITE DIMENSIONAL CONDITIONING FUNCTION</atitle><jtitle>Taehan Suhakhoe hoebo</jtitle><addtitle>대한수학회보</addtitle><date>2023</date><risdate>2023</risdate><volume>60</volume><issue>5</issue><spage>1221</spage><epage>1235</epage><pages>1221-1235</pages><issn>1015-8634</issn><abstract>In this paper, we use an infinite dimensional conditioning function to define a conditional Fourier-Feynman transform (CFFT) and a conditional convolution product (CCP) on the Wiener space. We establish the existences of the CFFT and the CCP for bounded functions which form a Banach algebra. We then provide fundamental relationships between the CFFTs and the CCPs.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1015-8634
ispartof Taehan Suhakhoe hoebo, 2023, Vol.60 (5), p.1221-1235
issn 1015-8634
language kor
recordid cdi_kisti_ndsl_JAKO202328953565865
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONDITIONAL CONVOLUTION PRODUCT ASSOCIATED WITH INFINITE DIMENSIONAL CONDITIONING FUNCTION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A29%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CONDITIONAL%20FOURIER-FEYNMAN%20TRANSFORM%20AND%20CONDITIONAL%20CONVOLUTION%20PRODUCT%20ASSOCIATED%20WITH%20INFINITE%20DIMENSIONAL%20CONDITIONING%20FUNCTION&rft.jtitle=Taehan%20Suhakhoe%20hoebo&rft.au=Jae%20Gil%20Choi&rft.date=2023&rft.volume=60&rft.issue=5&rft.spage=1221&rft.epage=1235&rft.pages=1221-1235&rft.issn=1015-8634&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO202328953565865%3C/kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true