K-평균 군집화 데이터 증강을 통한 주가 심층 예측

금융 분야에서 주가예측연구는 거래 안정성 및 이익 실현 등을 목적으로 한다. 기존의 통계적 예측기법은 무작위로 예측한 결과와 정확도 측면에서 비슷하거나 낮은 예측 신뢰도 때문에 실제 거래 결정에 참고 되기 어렵다. 인공지능 모델은 데이터특성과 변동패턴을 학습해 예측하기 때문에 향상된 정확도를 달성한다. 그러나 장기간의 시계열 데이터를 사용해 주가를 예측하는 것은 여전히 어려운 문제이다. 본 논문에서는 K-means 클러스터링 기반의 데이터 증강 및 입력 시퀀스의 Window-size 별 정규화 기법과 시계열 학습에 특화된 LSTM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inteonet jeongbo hakoe nonmunji = Journal of Korean Society for Internet Information 2023-04, Vol.24 (2), p.67-74
Hauptverfasser: 한경훈, Kyounghoon Han, 양희규, Huigyu Yang, 추현승, Hyunseung Choo
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:금융 분야에서 주가예측연구는 거래 안정성 및 이익 실현 등을 목적으로 한다. 기존의 통계적 예측기법은 무작위로 예측한 결과와 정확도 측면에서 비슷하거나 낮은 예측 신뢰도 때문에 실제 거래 결정에 참고 되기 어렵다. 인공지능 모델은 데이터특성과 변동패턴을 학습해 예측하기 때문에 향상된 정확도를 달성한다. 그러나 장기간의 시계열 데이터를 사용해 주가를 예측하는 것은 여전히 어려운 문제이다. 본 논문에서는 K-means 클러스터링 기반의 데이터 증강 및 입력 시퀀스의 Window-size 별 정규화 기법과 시계열 학습에 특화된 LSTM 모델을 활용하여 안정적이고 신뢰성 있는 주가예측 방법을 제안한다. 이를 통해 더욱 정확하고 신뢰성 있는 예측 결과를 얻고, 나아가 시장 안정성에 기여할 뿐 아니라 높은 수익도 추구할 수 있다. Stock price prediction research in the financial sector aims to ensure trading stability and achieve profit realization. Conventional statistical prediction techniques are not reliable for actual trading decisions due to low prediction accuracy compared to randomly predicted results. Artificial intelligence models improve accuracy by learning data characteristics and fluctuation patterns to make predictions. However, predicting stock prices using long-term time series data remains a challenging problem. This paper proposes a stable and reliable stock price prediction method using K-means clustering-based data augmentation and normalization techniques and LSTM models specialized in time series learning. This enables obtaining more accurate and reliable prediction results and pursuing high profits, as well as contributing to market stability.
ISSN:1598-0170
2287-1136