GOMS: Large-scale ontology management system using graph databases
Large-scale ontology management is one of the main issues when using ontology data practically. Although many approaches have been proposed in relational database management systems (RDBMSs) or object-oriented DBMSs (OODBMSs) to develop large-scale ontology management systems, they have several limi...
Gespeichert in:
Veröffentlicht in: | ETRI journal 2022-10, Vol.44 (5), p.780-793 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 793 |
---|---|
container_issue | 5 |
container_start_page | 780 |
container_title | ETRI journal |
container_volume | 44 |
creator | Lee, Chun-Hee Kang, Dong-oh |
description | Large-scale ontology management is one of the main issues when using ontology data practically. Although many approaches have been proposed in relational database management systems (RDBMSs) or object-oriented DBMSs (OODBMSs) to develop large-scale ontology management systems, they have several limitations because ontology data structures are intrinsically different from traditional data structures in RDBMSs or OODBMSs. In addition, users have difficulty using ontology data because many terminologies (ontology nodes) in large-scale ontology data match with a given string keyword. Therefore, in this study, we propose a (graph database-based ontology management system (GOMS) to efficiently manage large-scale ontology data. GOMS uses a graph DBMS and provides new query templates to help users find key concepts or instances. Furthermore, to run queries with multiple joins and path conditions efficiently, we propose GOMS encoding as a filtering tool and develop hash-based join processing algorithms in the graph DBMS. Finally, we experimentally show that GOMS can process various types of queries efficiently. |
format | Article |
fullrecord | <record><control><sourceid>kyobo_kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO202270649312512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4010036909068</sourcerecordid><originalsourceid>FETCH-LOGICAL-k608-1f8e648503629c88b9c97a4156dc665eea32635b2f25d57c2b95a6d4eb474fae3</originalsourceid><addsrcrecordid>eNpNjz1PwzAURS0EElXpf_DCGMl-_mYrFRRKUQa6R8_JS4iSxqgOQ_89lWBgusvVuedesQWAUoVTYK_ZQgKYwmqrbtkq5z4KI6V04N2CPW7L948HvsdTR0WucSSepjmNqTvzI07Y0ZGmmedznunIv3M_dbw74dcnb3DGiJnyHbtpccy0-sslOzw_HTYvxb7cvm7W-2Kwwhey9WS1N0JZCLX3MdTBoZbGNrW1hggvrspEaME0xtUQg0HbaIra6RZJLdn9L3bo89xXU5PHard-K0EAOGF1UBKMhH-9c4qpiikN9eUCnSotpLjMBxGE9eoH9r9Rng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>GOMS: Large-scale ontology management system using graph databases</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lee, Chun-Hee ; Kang, Dong-oh</creator><creatorcontrib>Lee, Chun-Hee ; Kang, Dong-oh</creatorcontrib><description>Large-scale ontology management is one of the main issues when using ontology data practically. Although many approaches have been proposed in relational database management systems (RDBMSs) or object-oriented DBMSs (OODBMSs) to develop large-scale ontology management systems, they have several limitations because ontology data structures are intrinsically different from traditional data structures in RDBMSs or OODBMSs. In addition, users have difficulty using ontology data because many terminologies (ontology nodes) in large-scale ontology data match with a given string keyword. Therefore, in this study, we propose a (graph database-based ontology management system (GOMS) to efficiently manage large-scale ontology data. GOMS uses a graph DBMS and provides new query templates to help users find key concepts or instances. Furthermore, to run queries with multiple joins and path conditions efficiently, we propose GOMS encoding as a filtering tool and develop hash-based join processing algorithms in the graph DBMS. Finally, we experimentally show that GOMS can process various types of queries efficiently.</description><identifier>ISSN: 1225-6463</identifier><identifier>EISSN: 2233-7326</identifier><language>kor</language><publisher>한국전자통신연구원</publisher><ispartof>ETRI journal, 2022-10, Vol.44 (5), p.780-793</ispartof><rights>COPYRIGHT(C) KYOBO BOOK CENTRE ALL RIGHTS RESERVED</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids></links><search><creatorcontrib>Lee, Chun-Hee</creatorcontrib><creatorcontrib>Kang, Dong-oh</creatorcontrib><title>GOMS: Large-scale ontology management system using graph databases</title><title>ETRI journal</title><addtitle>ETRI journal</addtitle><description>Large-scale ontology management is one of the main issues when using ontology data practically. Although many approaches have been proposed in relational database management systems (RDBMSs) or object-oriented DBMSs (OODBMSs) to develop large-scale ontology management systems, they have several limitations because ontology data structures are intrinsically different from traditional data structures in RDBMSs or OODBMSs. In addition, users have difficulty using ontology data because many terminologies (ontology nodes) in large-scale ontology data match with a given string keyword. Therefore, in this study, we propose a (graph database-based ontology management system (GOMS) to efficiently manage large-scale ontology data. GOMS uses a graph DBMS and provides new query templates to help users find key concepts or instances. Furthermore, to run queries with multiple joins and path conditions efficiently, we propose GOMS encoding as a filtering tool and develop hash-based join processing algorithms in the graph DBMS. Finally, we experimentally show that GOMS can process various types of queries efficiently.</description><issn>1225-6463</issn><issn>2233-7326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNpNjz1PwzAURS0EElXpf_DCGMl-_mYrFRRKUQa6R8_JS4iSxqgOQ_89lWBgusvVuedesQWAUoVTYK_ZQgKYwmqrbtkq5z4KI6V04N2CPW7L948HvsdTR0WucSSepjmNqTvzI07Y0ZGmmedznunIv3M_dbw74dcnb3DGiJnyHbtpccy0-sslOzw_HTYvxb7cvm7W-2Kwwhey9WS1N0JZCLX3MdTBoZbGNrW1hggvrspEaME0xtUQg0HbaIra6RZJLdn9L3bo89xXU5PHard-K0EAOGF1UBKMhH-9c4qpiikN9eUCnSotpLjMBxGE9eoH9r9Rng</recordid><startdate>20221031</startdate><enddate>20221031</enddate><creator>Lee, Chun-Hee</creator><creator>Kang, Dong-oh</creator><general>한국전자통신연구원</general><general>ETRI</general><scope>P5Y</scope><scope>SSSTE</scope><scope>JDI</scope></search><sort><creationdate>20221031</creationdate><title>GOMS: Large-scale ontology management system using graph databases</title><author>Lee, Chun-Hee ; Kang, Dong-oh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-k608-1f8e648503629c88b9c97a4156dc665eea32635b2f25d57c2b95a6d4eb474fae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Chun-Hee</creatorcontrib><creatorcontrib>Kang, Dong-oh</creatorcontrib><collection>Kyobo Scholar (교보스콜라)</collection><collection>Scholar(스콜라)</collection><collection>KoreaScience</collection><jtitle>ETRI journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Chun-Hee</au><au>Kang, Dong-oh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GOMS: Large-scale ontology management system using graph databases</atitle><jtitle>ETRI journal</jtitle><addtitle>ETRI journal</addtitle><date>2022-10-31</date><risdate>2022</risdate><volume>44</volume><issue>5</issue><spage>780</spage><epage>793</epage><pages>780-793</pages><issn>1225-6463</issn><eissn>2233-7326</eissn><abstract>Large-scale ontology management is one of the main issues when using ontology data practically. Although many approaches have been proposed in relational database management systems (RDBMSs) or object-oriented DBMSs (OODBMSs) to develop large-scale ontology management systems, they have several limitations because ontology data structures are intrinsically different from traditional data structures in RDBMSs or OODBMSs. In addition, users have difficulty using ontology data because many terminologies (ontology nodes) in large-scale ontology data match with a given string keyword. Therefore, in this study, we propose a (graph database-based ontology management system (GOMS) to efficiently manage large-scale ontology data. GOMS uses a graph DBMS and provides new query templates to help users find key concepts or instances. Furthermore, to run queries with multiple joins and path conditions efficiently, we propose GOMS encoding as a filtering tool and develop hash-based join processing algorithms in the graph DBMS. Finally, we experimentally show that GOMS can process various types of queries efficiently.</abstract><pub>한국전자통신연구원</pub><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1225-6463 |
ispartof | ETRI journal, 2022-10, Vol.44 (5), p.780-793 |
issn | 1225-6463 2233-7326 |
language | kor |
recordid | cdi_kisti_ndsl_JAKO202270649312512 |
source | DOAJ Directory of Open Access Journals; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals |
title | GOMS: Large-scale ontology management system using graph databases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A54%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kyobo_kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GOMS:%20Large-scale%20ontology%20management%20system%20using%20graph%20databases&rft.jtitle=ETRI%20journal&rft.au=Lee,%20Chun-Hee&rft.date=2022-10-31&rft.volume=44&rft.issue=5&rft.spage=780&rft.epage=793&rft.pages=780-793&rft.issn=1225-6463&rft.eissn=2233-7326&rft_id=info:doi/&rft_dat=%3Ckyobo_kisti%3E4010036909068%3C/kyobo_kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |