Applying Token Tagging to Augment Dataset for Automatic Program Repair

Automatic program repair (APR) techniques focus on automatically repairing bugs in programs and providing correct patches for developers, which have been investigated for decades. However, most studies have limitations in repairing complex bugs. To overcome these limitations, we developed an approac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JIPS(Journal of Information Processing Systems) 2022-10, Vol.18 (5), p.628-636
Hauptverfasser: Hu, Huimin, Lee, Byungjeong
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 636
container_issue 5
container_start_page 628
container_title JIPS(Journal of Information Processing Systems)
container_volume 18
creator Hu, Huimin
Lee, Byungjeong
description Automatic program repair (APR) techniques focus on automatically repairing bugs in programs and providing correct patches for developers, which have been investigated for decades. However, most studies have limitations in repairing complex bugs. To overcome these limitations, we developed an approach that augments datasets by utilizing token tagging and applying machine learning techniques for APR. First, to alleviate the data insufficiency problem, we augmented datasets by extracting all the methods (buggy and non-buggy methods) in the program source code and conducting token tagging on non-buggy methods. Second, we fed the preprocessed code into the model as an input for training. Finally, we evaluated the performance of the proposed approach by comparing it with the baselines. The results show that the proposed approach is efficient for augmenting datasets using token tagging and is promising for APR.
format Article
fullrecord <record><control><sourceid>kiss_kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO202232149584890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><kiss_id>3987683</kiss_id><sourcerecordid>3987683</sourcerecordid><originalsourceid>FETCH-LOGICAL-k500-9869601c0f39760a9612b64e33d778ce8fa0f734aa4b1942e4c8bf6a5a42cd9c3</originalsourceid><addsrcrecordid>eNo9jktLxDAYRYMoWMb5BW6ycVnIu8myjI6vgRHpYnbla5uU0CdJXMy_d0RxdTmXw-VeoYwRw3JN5OkaZdQUKjeUn27RNkbfEFJIqRiVGdqX6zqe_dzjahnsjCvo-x9KCy6_-snOCT9CgmgTdku4dGmZIPkWf4SlDzDhT7uCD3foxsEY7fYvN6jaP1W7l_xwfH7dlYd8kITkRiujCG2J45dHBIyirFHCct4VhW6tdkBcwQWAaKgRzIpWN06BBMHazrR8gx5-Zwcfk6_nLo71W_l-ZIQxzqgwUgttyMW7__divQY_QTjX3OhCac6_AX37UGw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Applying Token Tagging to Augment Dataset for Automatic Program Repair</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hu, Huimin ; Lee, Byungjeong</creator><creatorcontrib>Hu, Huimin ; Lee, Byungjeong</creatorcontrib><description>Automatic program repair (APR) techniques focus on automatically repairing bugs in programs and providing correct patches for developers, which have been investigated for decades. However, most studies have limitations in repairing complex bugs. To overcome these limitations, we developed an approach that augments datasets by utilizing token tagging and applying machine learning techniques for APR. First, to alleviate the data insufficiency problem, we augmented datasets by extracting all the methods (buggy and non-buggy methods) in the program source code and conducting token tagging on non-buggy methods. Second, we fed the preprocessed code into the model as an input for training. Finally, we evaluated the performance of the proposed approach by comparing it with the baselines. The results show that the proposed approach is efficient for augmenting datasets using token tagging and is promising for APR.</description><identifier>ISSN: 1976-913X</identifier><identifier>EISSN: 2092-805X</identifier><language>kor</language><publisher>한국정보처리학회</publisher><subject>Augment Dataset ; Automatic Program Repair ; Machine Learning ; Token Tagging</subject><ispartof>JIPS(Journal of Information Processing Systems), 2022-10, Vol.18 (5), p.628-636</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882</link.rule.ids></links><search><creatorcontrib>Hu, Huimin</creatorcontrib><creatorcontrib>Lee, Byungjeong</creatorcontrib><title>Applying Token Tagging to Augment Dataset for Automatic Program Repair</title><title>JIPS(Journal of Information Processing Systems)</title><addtitle>JIPS(Journal of Information Processing Systems)</addtitle><description>Automatic program repair (APR) techniques focus on automatically repairing bugs in programs and providing correct patches for developers, which have been investigated for decades. However, most studies have limitations in repairing complex bugs. To overcome these limitations, we developed an approach that augments datasets by utilizing token tagging and applying machine learning techniques for APR. First, to alleviate the data insufficiency problem, we augmented datasets by extracting all the methods (buggy and non-buggy methods) in the program source code and conducting token tagging on non-buggy methods. Second, we fed the preprocessed code into the model as an input for training. Finally, we evaluated the performance of the proposed approach by comparing it with the baselines. The results show that the proposed approach is efficient for augmenting datasets using token tagging and is promising for APR.</description><subject>Augment Dataset</subject><subject>Automatic Program Repair</subject><subject>Machine Learning</subject><subject>Token Tagging</subject><issn>1976-913X</issn><issn>2092-805X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNo9jktLxDAYRYMoWMb5BW6ycVnIu8myjI6vgRHpYnbla5uU0CdJXMy_d0RxdTmXw-VeoYwRw3JN5OkaZdQUKjeUn27RNkbfEFJIqRiVGdqX6zqe_dzjahnsjCvo-x9KCy6_-snOCT9CgmgTdku4dGmZIPkWf4SlDzDhT7uCD3foxsEY7fYvN6jaP1W7l_xwfH7dlYd8kITkRiujCG2J45dHBIyirFHCct4VhW6tdkBcwQWAaKgRzIpWN06BBMHazrR8gx5-Zwcfk6_nLo71W_l-ZIQxzqgwUgttyMW7__divQY_QTjX3OhCac6_AX37UGw</recordid><startdate>20221031</startdate><enddate>20221031</enddate><creator>Hu, Huimin</creator><creator>Lee, Byungjeong</creator><general>한국정보처리학회</general><scope>HZB</scope><scope>Q5X</scope><scope>JDI</scope></search><sort><creationdate>20221031</creationdate><title>Applying Token Tagging to Augment Dataset for Automatic Program Repair</title><author>Hu, Huimin ; Lee, Byungjeong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-k500-9869601c0f39760a9612b64e33d778ce8fa0f734aa4b1942e4c8bf6a5a42cd9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2022</creationdate><topic>Augment Dataset</topic><topic>Automatic Program Repair</topic><topic>Machine Learning</topic><topic>Token Tagging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Huimin</creatorcontrib><creatorcontrib>Lee, Byungjeong</creatorcontrib><collection>Korean Studies Information Service System (KISS)</collection><collection>Korean Studies Information Service System (KISS) B-Type</collection><collection>KoreaScience</collection><jtitle>JIPS(Journal of Information Processing Systems)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Huimin</au><au>Lee, Byungjeong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applying Token Tagging to Augment Dataset for Automatic Program Repair</atitle><jtitle>JIPS(Journal of Information Processing Systems)</jtitle><addtitle>JIPS(Journal of Information Processing Systems)</addtitle><date>2022-10-31</date><risdate>2022</risdate><volume>18</volume><issue>5</issue><spage>628</spage><epage>636</epage><pages>628-636</pages><issn>1976-913X</issn><eissn>2092-805X</eissn><abstract>Automatic program repair (APR) techniques focus on automatically repairing bugs in programs and providing correct patches for developers, which have been investigated for decades. However, most studies have limitations in repairing complex bugs. To overcome these limitations, we developed an approach that augments datasets by utilizing token tagging and applying machine learning techniques for APR. First, to alleviate the data insufficiency problem, we augmented datasets by extracting all the methods (buggy and non-buggy methods) in the program source code and conducting token tagging on non-buggy methods. Second, we fed the preprocessed code into the model as an input for training. Finally, we evaluated the performance of the proposed approach by comparing it with the baselines. The results show that the proposed approach is efficient for augmenting datasets using token tagging and is promising for APR.</abstract><pub>한국정보처리학회</pub><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1976-913X
ispartof JIPS(Journal of Information Processing Systems), 2022-10, Vol.18 (5), p.628-636
issn 1976-913X
2092-805X
language kor
recordid cdi_kisti_ndsl_JAKO202232149584890
source EZB-FREE-00999 freely available EZB journals
subjects Augment Dataset
Automatic Program Repair
Machine Learning
Token Tagging
title Applying Token Tagging to Augment Dataset for Automatic Program Repair
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A27%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kiss_kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applying%20Token%20Tagging%20to%20Augment%20Dataset%20for%20Automatic%20Program%20Repair&rft.jtitle=JIPS(Journal%20of%20Information%20Processing%20Systems)&rft.au=Hu,%20Huimin&rft.date=2022-10-31&rft.volume=18&rft.issue=5&rft.spage=628&rft.epage=636&rft.pages=628-636&rft.issn=1976-913X&rft.eissn=2092-805X&rft_id=info:doi/&rft_dat=%3Ckiss_kisti%3E3987683%3C/kiss_kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_kiss_id=3987683&rfr_iscdi=true