DIRICHLET EIGENVALUE PROBLEMS UNDER MUSIELAK-ORLICZ GROWTH

This paper studies the eigenvalues of the G(·)-Laplacian Dirichlet problem $$\{-div\;\(\frac{g(x,\;{\mid}{\nabla}u{\mid})}{{\mid}{\nabla}u{\mid}}{\nabla}u\)={\lambda}\;\(\frac{g(x,{\mid}u{\mid})}{{\mid}u{\mid}}u\)\;in\;{\Omega}, \\u\;=\;0\;on\;{\partial}{\Omega},$$ where Ω is a bounded domain in ℝN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Mathematical Society 2022, Vol.59 (6), p.1139-1151
Hauptverfasser: Benyaiche, Allami, Khlifi, Ismail
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1151
container_issue 6
container_start_page 1139
container_title Journal of the Korean Mathematical Society
container_volume 59
creator Benyaiche, Allami
Khlifi, Ismail
description This paper studies the eigenvalues of the G(·)-Laplacian Dirichlet problem $$\{-div\;\(\frac{g(x,\;{\mid}{\nabla}u{\mid})}{{\mid}{\nabla}u{\mid}}{\nabla}u\)={\lambda}\;\(\frac{g(x,{\mid}u{\mid})}{{\mid}u{\mid}}u\)\;in\;{\Omega}, \\u\;=\;0\;on\;{\partial}{\Omega},$$ where Ω is a bounded domain in ℝN and g is the density of a generalized Φ-function G(·). Using the Lusternik-Schnirelmann principle, we show the existence of a nondecreasing sequence of nonnegative eigenvalues.
format Article
fullrecord <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO202231364150425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO202231364150425</sourcerecordid><originalsourceid>FETCH-kisti_ndsl_JAKO2022313641504253</originalsourceid><addsrcrecordid>eNqNyj0OgjAYANAOmkiUO3RxJOkvETeET6gUagrVxIVo1KSRuNT7x8UDOL3lzVBEOBFJllGxQHEI_kYo2zAhZBqhbamsKmoNAwZVQXfKtQN8tGanoe2x60qwuHW9Ap03ibFaFRdcWXMe6hWaP69TeMQ_l2i9h6Gok5cPHz--72EaD3ljGGGMU54KKolgkv_7vpc3L3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>DIRICHLET EIGENVALUE PROBLEMS UNDER MUSIELAK-ORLICZ GROWTH</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Benyaiche, Allami ; Khlifi, Ismail</creator><creatorcontrib>Benyaiche, Allami ; Khlifi, Ismail</creatorcontrib><description>This paper studies the eigenvalues of the G(·)-Laplacian Dirichlet problem $$\{-div\;\(\frac{g(x,\;{\mid}{\nabla}u{\mid})}{{\mid}{\nabla}u{\mid}}{\nabla}u\)={\lambda}\;\(\frac{g(x,{\mid}u{\mid})}{{\mid}u{\mid}}u\)\;in\;{\Omega}, \\u\;=\;0\;on\;{\partial}{\Omega},$$ where Ω is a bounded domain in ℝN and g is the density of a generalized Φ-function G(·). Using the Lusternik-Schnirelmann principle, we show the existence of a nondecreasing sequence of nonnegative eigenvalues.</description><identifier>ISSN: 0304-9914</identifier><language>kor</language><ispartof>Journal of the Korean Mathematical Society, 2022, Vol.59 (6), p.1139-1151</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010</link.rule.ids></links><search><creatorcontrib>Benyaiche, Allami</creatorcontrib><creatorcontrib>Khlifi, Ismail</creatorcontrib><title>DIRICHLET EIGENVALUE PROBLEMS UNDER MUSIELAK-ORLICZ GROWTH</title><title>Journal of the Korean Mathematical Society</title><addtitle>대한수학회지</addtitle><description>This paper studies the eigenvalues of the G(·)-Laplacian Dirichlet problem $$\{-div\;\(\frac{g(x,\;{\mid}{\nabla}u{\mid})}{{\mid}{\nabla}u{\mid}}{\nabla}u\)={\lambda}\;\(\frac{g(x,{\mid}u{\mid})}{{\mid}u{\mid}}u\)\;in\;{\Omega}, \\u\;=\;0\;on\;{\partial}{\Omega},$$ where Ω is a bounded domain in ℝN and g is the density of a generalized Φ-function G(·). Using the Lusternik-Schnirelmann principle, we show the existence of a nondecreasing sequence of nonnegative eigenvalues.</description><issn>0304-9914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNqNyj0OgjAYANAOmkiUO3RxJOkvETeET6gUagrVxIVo1KSRuNT7x8UDOL3lzVBEOBFJllGxQHEI_kYo2zAhZBqhbamsKmoNAwZVQXfKtQN8tGanoe2x60qwuHW9Ap03ibFaFRdcWXMe6hWaP69TeMQ_l2i9h6Gok5cPHz--72EaD3ljGGGMU54KKolgkv_7vpc3L3Q</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Benyaiche, Allami</creator><creator>Khlifi, Ismail</creator><scope>JDI</scope></search><sort><creationdate>2022</creationdate><title>DIRICHLET EIGENVALUE PROBLEMS UNDER MUSIELAK-ORLICZ GROWTH</title><author>Benyaiche, Allami ; Khlifi, Ismail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kisti_ndsl_JAKO2022313641504253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benyaiche, Allami</creatorcontrib><creatorcontrib>Khlifi, Ismail</creatorcontrib><collection>KoreaScience</collection><jtitle>Journal of the Korean Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benyaiche, Allami</au><au>Khlifi, Ismail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DIRICHLET EIGENVALUE PROBLEMS UNDER MUSIELAK-ORLICZ GROWTH</atitle><jtitle>Journal of the Korean Mathematical Society</jtitle><addtitle>대한수학회지</addtitle><date>2022</date><risdate>2022</risdate><volume>59</volume><issue>6</issue><spage>1139</spage><epage>1151</epage><pages>1139-1151</pages><issn>0304-9914</issn><abstract>This paper studies the eigenvalues of the G(·)-Laplacian Dirichlet problem $$\{-div\;\(\frac{g(x,\;{\mid}{\nabla}u{\mid})}{{\mid}{\nabla}u{\mid}}{\nabla}u\)={\lambda}\;\(\frac{g(x,{\mid}u{\mid})}{{\mid}u{\mid}}u\)\;in\;{\Omega}, \\u\;=\;0\;on\;{\partial}{\Omega},$$ where Ω is a bounded domain in ℝN and g is the density of a generalized Φ-function G(·). Using the Lusternik-Schnirelmann principle, we show the existence of a nondecreasing sequence of nonnegative eigenvalues.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-9914
ispartof Journal of the Korean Mathematical Society, 2022, Vol.59 (6), p.1139-1151
issn 0304-9914
language kor
recordid cdi_kisti_ndsl_JAKO202231364150425
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title DIRICHLET EIGENVALUE PROBLEMS UNDER MUSIELAK-ORLICZ GROWTH
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DIRICHLET%20EIGENVALUE%20PROBLEMS%20UNDER%20MUSIELAK-ORLICZ%20GROWTH&rft.jtitle=Journal%20of%20the%20Korean%20Mathematical%20Society&rft.au=Benyaiche,%20Allami&rft.date=2022&rft.volume=59&rft.issue=6&rft.spage=1139&rft.epage=1151&rft.pages=1139-1151&rft.issn=0304-9914&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO202231364150425%3C/kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true