A deep learning approach to permanent tooth germ detection on pediatric panoramic radiographs
Purpose: The aim of this study was to assess the performance of a deep learning system for permanent tooth germ detection on pediatric panoramic radiographs. Materials and Methods: In total, 4518 anonymized panoramic radiographs of children between 5 and 13 years of age were collected. YOLOv4, a con...
Gespeichert in:
Veröffentlicht in: | Imaging science in dentistry 2022, Vol.52 (52), p.275-281 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 281 |
---|---|
container_issue | 52 |
container_start_page | 275 |
container_title | Imaging science in dentistry |
container_volume | 52 |
creator | Kaya, Emine Gunec, Huseyin Gurkan Aydin, Kader Cesur Urkmez, Elif Seyda Duranay, Recep Ates, Hasan Fehmi |
description | Purpose: The aim of this study was to assess the performance of a deep learning system for permanent tooth germ detection on pediatric panoramic radiographs. Materials and Methods: In total, 4518 anonymized panoramic radiographs of children between 5 and 13 years of age were collected. YOLOv4, a convolutional neural network (CNN)-based object detection model, was used to automatically detect permanent tooth germs. Panoramic images of children processed in LabelImg were trained and tested in the YOLOv4 algorithm. True-positive, false-positive, and false-negative rates were calculated. A confusion matrix was used to evaluate the performance of the model. Results: The YOLOv4 model, which detected permanent tooth germs on pediatric panoramic radiographs, provided an average precision value of 94.16% and an F1 value of 0.90, indicating a high level of significance. The average YOLOv4 inference time was 90 ms. Conclusion: The detection of permanent tooth germs on pediatric panoramic X-rays using a deep learning-based approach may facilitate the early diagnosis of tooth deficiency or supernumerary teeth and help dental practitioners find more accurate treatment options while saving time and effort |
format | Article |
fullrecord | <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO202227754642054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO202227754642054</sourcerecordid><originalsourceid>FETCH-kisti_ndsl_JAKO2022277546420543</originalsourceid><addsrcrecordid>eNqNirEKwjAURYMoWLT_kMWxEF_apmsRRXRwcZXyaGIbbZOQ5P8xgzh7uXDPgbsgGQDnhWg4W_4YYE3yEF4spYJG1PuMPFoqlXJ0UuiNNgNF57zFfqTRUqf8jEaZmMTGkQ7J0z2qPmpraKpTUmP0uqcOjfU4J_IotR08ujFsyeqJU1D5dzdkdzreD-firUPUnZFh6i7t9QYMAISoyroEVpX8398HgCtEOw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A deep learning approach to permanent tooth germ detection on pediatric panoramic radiographs</title><source>KoreaMed Synapse</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>KoreaMed Open Access</source><source>PubMed Central</source><creator>Kaya, Emine ; Gunec, Huseyin Gurkan ; Aydin, Kader Cesur ; Urkmez, Elif Seyda ; Duranay, Recep ; Ates, Hasan Fehmi</creator><creatorcontrib>Kaya, Emine ; Gunec, Huseyin Gurkan ; Aydin, Kader Cesur ; Urkmez, Elif Seyda ; Duranay, Recep ; Ates, Hasan Fehmi</creatorcontrib><description>Purpose: The aim of this study was to assess the performance of a deep learning system for permanent tooth germ detection on pediatric panoramic radiographs. Materials and Methods: In total, 4518 anonymized panoramic radiographs of children between 5 and 13 years of age were collected. YOLOv4, a convolutional neural network (CNN)-based object detection model, was used to automatically detect permanent tooth germs. Panoramic images of children processed in LabelImg were trained and tested in the YOLOv4 algorithm. True-positive, false-positive, and false-negative rates were calculated. A confusion matrix was used to evaluate the performance of the model. Results: The YOLOv4 model, which detected permanent tooth germs on pediatric panoramic radiographs, provided an average precision value of 94.16% and an F1 value of 0.90, indicating a high level of significance. The average YOLOv4 inference time was 90 ms. Conclusion: The detection of permanent tooth germs on pediatric panoramic X-rays using a deep learning-based approach may facilitate the early diagnosis of tooth deficiency or supernumerary teeth and help dental practitioners find more accurate treatment options while saving time and effort</description><identifier>ISSN: 2233-7822</identifier><identifier>EISSN: 2233-7830</identifier><language>kor</language><ispartof>Imaging science in dentistry, 2022, Vol.52 (52), p.275-281</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024</link.rule.ids></links><search><creatorcontrib>Kaya, Emine</creatorcontrib><creatorcontrib>Gunec, Huseyin Gurkan</creatorcontrib><creatorcontrib>Aydin, Kader Cesur</creatorcontrib><creatorcontrib>Urkmez, Elif Seyda</creatorcontrib><creatorcontrib>Duranay, Recep</creatorcontrib><creatorcontrib>Ates, Hasan Fehmi</creatorcontrib><title>A deep learning approach to permanent tooth germ detection on pediatric panoramic radiographs</title><title>Imaging science in dentistry</title><addtitle>Imaging science in dentistry</addtitle><description>Purpose: The aim of this study was to assess the performance of a deep learning system for permanent tooth germ detection on pediatric panoramic radiographs. Materials and Methods: In total, 4518 anonymized panoramic radiographs of children between 5 and 13 years of age were collected. YOLOv4, a convolutional neural network (CNN)-based object detection model, was used to automatically detect permanent tooth germs. Panoramic images of children processed in LabelImg were trained and tested in the YOLOv4 algorithm. True-positive, false-positive, and false-negative rates were calculated. A confusion matrix was used to evaluate the performance of the model. Results: The YOLOv4 model, which detected permanent tooth germs on pediatric panoramic radiographs, provided an average precision value of 94.16% and an F1 value of 0.90, indicating a high level of significance. The average YOLOv4 inference time was 90 ms. Conclusion: The detection of permanent tooth germs on pediatric panoramic X-rays using a deep learning-based approach may facilitate the early diagnosis of tooth deficiency or supernumerary teeth and help dental practitioners find more accurate treatment options while saving time and effort</description><issn>2233-7822</issn><issn>2233-7830</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNqNirEKwjAURYMoWLT_kMWxEF_apmsRRXRwcZXyaGIbbZOQ5P8xgzh7uXDPgbsgGQDnhWg4W_4YYE3yEF4spYJG1PuMPFoqlXJ0UuiNNgNF57zFfqTRUqf8jEaZmMTGkQ7J0z2qPmpraKpTUmP0uqcOjfU4J_IotR08ujFsyeqJU1D5dzdkdzreD-firUPUnZFh6i7t9QYMAISoyroEVpX8398HgCtEOw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Kaya, Emine</creator><creator>Gunec, Huseyin Gurkan</creator><creator>Aydin, Kader Cesur</creator><creator>Urkmez, Elif Seyda</creator><creator>Duranay, Recep</creator><creator>Ates, Hasan Fehmi</creator><scope>JDI</scope></search><sort><creationdate>2022</creationdate><title>A deep learning approach to permanent tooth germ detection on pediatric panoramic radiographs</title><author>Kaya, Emine ; Gunec, Huseyin Gurkan ; Aydin, Kader Cesur ; Urkmez, Elif Seyda ; Duranay, Recep ; Ates, Hasan Fehmi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kisti_ndsl_JAKO2022277546420543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Kaya, Emine</creatorcontrib><creatorcontrib>Gunec, Huseyin Gurkan</creatorcontrib><creatorcontrib>Aydin, Kader Cesur</creatorcontrib><creatorcontrib>Urkmez, Elif Seyda</creatorcontrib><creatorcontrib>Duranay, Recep</creatorcontrib><creatorcontrib>Ates, Hasan Fehmi</creatorcontrib><collection>KoreaScience</collection><jtitle>Imaging science in dentistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaya, Emine</au><au>Gunec, Huseyin Gurkan</au><au>Aydin, Kader Cesur</au><au>Urkmez, Elif Seyda</au><au>Duranay, Recep</au><au>Ates, Hasan Fehmi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A deep learning approach to permanent tooth germ detection on pediatric panoramic radiographs</atitle><jtitle>Imaging science in dentistry</jtitle><addtitle>Imaging science in dentistry</addtitle><date>2022</date><risdate>2022</risdate><volume>52</volume><issue>52</issue><spage>275</spage><epage>281</epage><pages>275-281</pages><issn>2233-7822</issn><eissn>2233-7830</eissn><abstract>Purpose: The aim of this study was to assess the performance of a deep learning system for permanent tooth germ detection on pediatric panoramic radiographs. Materials and Methods: In total, 4518 anonymized panoramic radiographs of children between 5 and 13 years of age were collected. YOLOv4, a convolutional neural network (CNN)-based object detection model, was used to automatically detect permanent tooth germs. Panoramic images of children processed in LabelImg were trained and tested in the YOLOv4 algorithm. True-positive, false-positive, and false-negative rates were calculated. A confusion matrix was used to evaluate the performance of the model. Results: The YOLOv4 model, which detected permanent tooth germs on pediatric panoramic radiographs, provided an average precision value of 94.16% and an F1 value of 0.90, indicating a high level of significance. The average YOLOv4 inference time was 90 ms. Conclusion: The detection of permanent tooth germs on pediatric panoramic X-rays using a deep learning-based approach may facilitate the early diagnosis of tooth deficiency or supernumerary teeth and help dental practitioners find more accurate treatment options while saving time and effort</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2233-7822 |
ispartof | Imaging science in dentistry, 2022, Vol.52 (52), p.275-281 |
issn | 2233-7822 2233-7830 |
language | kor |
recordid | cdi_kisti_ndsl_JAKO202227754642054 |
source | KoreaMed Synapse; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; KoreaMed Open Access; PubMed Central |
title | A deep learning approach to permanent tooth germ detection on pediatric panoramic radiographs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A51%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20deep%20learning%20approach%20to%20permanent%20tooth%20germ%20detection%20on%20pediatric%20panoramic%20radiographs&rft.jtitle=Imaging%20science%20in%20dentistry&rft.au=Kaya,%20Emine&rft.date=2022&rft.volume=52&rft.issue=52&rft.spage=275&rft.epage=281&rft.pages=275-281&rft.issn=2233-7822&rft.eissn=2233-7830&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO202227754642054%3C/kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |