COVID-19 발생 전·후 언론보도에 나타난 간호사 이미지에 대한 텍스트 네트워크 분석 및 토픽 모델링

Purpose: The aims of study were to identify the main keywords, the network structure, and the main topics of press articles related to nurses that have appeared in media reports. Methods: Data were media articles related to the topic "nurse" reported in 16 central media within a one-year p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Korean Academy of Nursing 2022-06, Vol.52 (3), p.291-307
Hauptverfasser: 박민영, 정석희, 김희선, 이은지, Park, Min Young, Jeong, Seok Hee, Kim, Hee Sun, Lee, Eun Jee
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose: The aims of study were to identify the main keywords, the network structure, and the main topics of press articles related to nurses that have appeared in media reports. Methods: Data were media articles related to the topic "nurse" reported in 16 central media within a one-year period spanning July 1, 2019 to June 30, 2020. Data were collected from the Big Kinds database. A total of 7,800 articles were searched, and 1,038 were used for the final analysis. Text network analysis and topic modeling were performed using NetMiner 4.4. Results: The number of media reports related to nurses increased by 3.86 times after the novel coronavirus (COVID-19) outbreak compared to prior. Pre- and post-COVID-19 network characteristics were density 0.002, 0.001; average degree 4.63, 4.92; and average distance 4.25, 4.01, respectively. Four topics were derived before and after the COVID-19 outbreak, respectively. Pre-COVID-19 example topics are "a nurse who committed suicide because she could not withstand the Taewoom at work" and "a nurse as a perpetrator of a newborn abuse case," while post-COVID-19 examples are "a nurse as a victim of COVID-19," "a nurse working with the support of the people," and "a nurse as a top contributor and a warrior to protect from COVID-19." Conclusion: Topic modeling shows that topics become more positive after the COVID-19 outbreak. Individual nurses and nursing organizations should continuously monitor and conduct further research on nurses' image.
ISSN:2005-3673
2093-758X