Analyzing Factors Contributing to Research Performance using Backpropagation Neural Network and Support Vector Machine
In this study, the authors intend to analyze factors contributing to research performance using Backpropagation Neural Network and Support Vector Machine. The analyzing factors contributing to lecturer research performance start from defining the features. The next stage is to collect datasets based...
Gespeichert in:
Veröffentlicht in: | KSII transactions on Internet and information systems 2022-01, Vol.16 (1), p.153-172 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 172 |
---|---|
container_issue | 1 |
container_start_page | 153 |
container_title | KSII transactions on Internet and information systems |
container_volume | 16 |
creator | Ermatita, Ermatita Sanmorino, Ahmad Samsuryadi, Samsuryadi Rini, Dian Palupi |
description | In this study, the authors intend to analyze factors contributing to research performance using Backpropagation Neural Network and Support Vector Machine. The analyzing factors contributing to lecturer research performance start from defining the features. The next stage is to collect datasets based on defining features. Then transform the raw dataset into data ready to be processed. After the data is transformed, the next stage is the selection of features. Before the selection of features, the target feature is determined, namely research performance. The selection of features consists of Chi-Square selection (U), and Pearson correlation coefficient (CM). The selection of features produces eight factors contributing to lecturer research performance are Scientific Papers (U: 154.38, CM: 0.79), Number of Citation (U: 95.86, CM: 0.70), Conference (U: 68.67, CM: 0.57), Grade (U: 10.13, CM: 0.29) , Grant (U: 35.40, CM: 0.36), IPR (U: 19.81, CM: 0.27), Qualification (U: 2.57, CM: 0.26), and Grant Awardee (U: 2.66, CM: 0.26). To analyze the factors, two data mining classifiers were involved, Backpropagation Neural Networks (BPNN) and Support Vector Machine (SVM). Evaluation of the data mining classifier with an accuracy score for BPNN of 95 percent, and SVM of 92 percent. The essence of this analysis is not to find the highest accuracy score, but rather whether the factors can pass the test phase with the expected results. The findings of this study reveal the factors that have a significant impact on research performance and vice versa. |
format | Article |
fullrecord | <record><control><sourceid>kiss_kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO202209059048674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><kiss_id>3930897</kiss_id><sourcerecordid>3930897</sourcerecordid><originalsourceid>FETCH-LOGICAL-k504-dc9b9df17907b02744fe9738fecc6ca556fa4037c0d96f9dfff12a7c45f9aa973</originalsourceid><addsrcrecordid>eNpNjF1LwzAYhYsoOOZ-gTe58bKQpmnTXNbi_JpOdHhb3qbJFtolJUmV-evtUMSrczjn4TmJZglnecwIY6f_-nm08F43OCEFyWlRzKKP0kB_-NJmi5YggnUeVdYEp5sxHMdg0av0EpzYoRfplHV7MEKi0R_faxDd4OwAWwjaGvQsRwf9FOHTug6BadHbOAzWBfQuj3b0BGKnjbyIzhT0Xi5-cx5tljeb6i5erW_vq3IVdxmmcSt4w1uVMI5ZgwmjVEnO0kJJIXIBWZYroDhlArc8VxOpVEKACZopDjCR8-jqR9tpH3RtWt_XD-XjmmBCMMcZx7TIGZ24yz_O14PTe3CHOuUpLibLN_d7ZCs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analyzing Factors Contributing to Research Performance using Backpropagation Neural Network and Support Vector Machine</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ermatita, Ermatita ; Sanmorino, Ahmad ; Samsuryadi, Samsuryadi ; Rini, Dian Palupi</creator><creatorcontrib>Ermatita, Ermatita ; Sanmorino, Ahmad ; Samsuryadi, Samsuryadi ; Rini, Dian Palupi</creatorcontrib><description>In this study, the authors intend to analyze factors contributing to research performance using Backpropagation Neural Network and Support Vector Machine. The analyzing factors contributing to lecturer research performance start from defining the features. The next stage is to collect datasets based on defining features. Then transform the raw dataset into data ready to be processed. After the data is transformed, the next stage is the selection of features. Before the selection of features, the target feature is determined, namely research performance. The selection of features consists of Chi-Square selection (U), and Pearson correlation coefficient (CM). The selection of features produces eight factors contributing to lecturer research performance are Scientific Papers (U: 154.38, CM: 0.79), Number of Citation (U: 95.86, CM: 0.70), Conference (U: 68.67, CM: 0.57), Grade (U: 10.13, CM: 0.29) , Grant (U: 35.40, CM: 0.36), IPR (U: 19.81, CM: 0.27), Qualification (U: 2.57, CM: 0.26), and Grant Awardee (U: 2.66, CM: 0.26). To analyze the factors, two data mining classifiers were involved, Backpropagation Neural Networks (BPNN) and Support Vector Machine (SVM). Evaluation of the data mining classifier with an accuracy score for BPNN of 95 percent, and SVM of 92 percent. The essence of this analysis is not to find the highest accuracy score, but rather whether the factors can pass the test phase with the expected results. The findings of this study reveal the factors that have a significant impact on research performance and vice versa.</description><identifier>ISSN: 1976-7277</identifier><identifier>EISSN: 1976-7277</identifier><language>kor</language><publisher>한국인터넷정보학회</publisher><subject>backpropagation ; Factors contributing to research performance ; selection of features ; support vector machine</subject><ispartof>KSII transactions on Internet and information systems, 2022-01, Vol.16 (1), p.153-172</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids></links><search><creatorcontrib>Ermatita, Ermatita</creatorcontrib><creatorcontrib>Sanmorino, Ahmad</creatorcontrib><creatorcontrib>Samsuryadi, Samsuryadi</creatorcontrib><creatorcontrib>Rini, Dian Palupi</creatorcontrib><title>Analyzing Factors Contributing to Research Performance using Backpropagation Neural Network and Support Vector Machine</title><title>KSII transactions on Internet and information systems</title><addtitle>KSII Transactions on Internet and Information Systems (TIIS)</addtitle><description>In this study, the authors intend to analyze factors contributing to research performance using Backpropagation Neural Network and Support Vector Machine. The analyzing factors contributing to lecturer research performance start from defining the features. The next stage is to collect datasets based on defining features. Then transform the raw dataset into data ready to be processed. After the data is transformed, the next stage is the selection of features. Before the selection of features, the target feature is determined, namely research performance. The selection of features consists of Chi-Square selection (U), and Pearson correlation coefficient (CM). The selection of features produces eight factors contributing to lecturer research performance are Scientific Papers (U: 154.38, CM: 0.79), Number of Citation (U: 95.86, CM: 0.70), Conference (U: 68.67, CM: 0.57), Grade (U: 10.13, CM: 0.29) , Grant (U: 35.40, CM: 0.36), IPR (U: 19.81, CM: 0.27), Qualification (U: 2.57, CM: 0.26), and Grant Awardee (U: 2.66, CM: 0.26). To analyze the factors, two data mining classifiers were involved, Backpropagation Neural Networks (BPNN) and Support Vector Machine (SVM). Evaluation of the data mining classifier with an accuracy score for BPNN of 95 percent, and SVM of 92 percent. The essence of this analysis is not to find the highest accuracy score, but rather whether the factors can pass the test phase with the expected results. The findings of this study reveal the factors that have a significant impact on research performance and vice versa.</description><subject>backpropagation</subject><subject>Factors contributing to research performance</subject><subject>selection of features</subject><subject>support vector machine</subject><issn>1976-7277</issn><issn>1976-7277</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNpNjF1LwzAYhYsoOOZ-gTe58bKQpmnTXNbi_JpOdHhb3qbJFtolJUmV-evtUMSrczjn4TmJZglnecwIY6f_-nm08F43OCEFyWlRzKKP0kB_-NJmi5YggnUeVdYEp5sxHMdg0av0EpzYoRfplHV7MEKi0R_faxDd4OwAWwjaGvQsRwf9FOHTug6BadHbOAzWBfQuj3b0BGKnjbyIzhT0Xi5-cx5tljeb6i5erW_vq3IVdxmmcSt4w1uVMI5ZgwmjVEnO0kJJIXIBWZYroDhlArc8VxOpVEKACZopDjCR8-jqR9tpH3RtWt_XD-XjmmBCMMcZx7TIGZ24yz_O14PTe3CHOuUpLibLN_d7ZCs</recordid><startdate>20220130</startdate><enddate>20220130</enddate><creator>Ermatita, Ermatita</creator><creator>Sanmorino, Ahmad</creator><creator>Samsuryadi, Samsuryadi</creator><creator>Rini, Dian Palupi</creator><general>한국인터넷정보학회</general><scope>HZB</scope><scope>Q5X</scope><scope>JDI</scope></search><sort><creationdate>20220130</creationdate><title>Analyzing Factors Contributing to Research Performance using Backpropagation Neural Network and Support Vector Machine</title><author>Ermatita, Ermatita ; Sanmorino, Ahmad ; Samsuryadi, Samsuryadi ; Rini, Dian Palupi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-k504-dc9b9df17907b02744fe9738fecc6ca556fa4037c0d96f9dfff12a7c45f9aa973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2022</creationdate><topic>backpropagation</topic><topic>Factors contributing to research performance</topic><topic>selection of features</topic><topic>support vector machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ermatita, Ermatita</creatorcontrib><creatorcontrib>Sanmorino, Ahmad</creatorcontrib><creatorcontrib>Samsuryadi, Samsuryadi</creatorcontrib><creatorcontrib>Rini, Dian Palupi</creatorcontrib><collection>Korean Studies Information Service System (KISS)</collection><collection>Korean Studies Information Service System (KISS) B-Type</collection><collection>KoreaScience</collection><jtitle>KSII transactions on Internet and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ermatita, Ermatita</au><au>Sanmorino, Ahmad</au><au>Samsuryadi, Samsuryadi</au><au>Rini, Dian Palupi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing Factors Contributing to Research Performance using Backpropagation Neural Network and Support Vector Machine</atitle><jtitle>KSII transactions on Internet and information systems</jtitle><addtitle>KSII Transactions on Internet and Information Systems (TIIS)</addtitle><date>2022-01-30</date><risdate>2022</risdate><volume>16</volume><issue>1</issue><spage>153</spage><epage>172</epage><pages>153-172</pages><issn>1976-7277</issn><eissn>1976-7277</eissn><abstract>In this study, the authors intend to analyze factors contributing to research performance using Backpropagation Neural Network and Support Vector Machine. The analyzing factors contributing to lecturer research performance start from defining the features. The next stage is to collect datasets based on defining features. Then transform the raw dataset into data ready to be processed. After the data is transformed, the next stage is the selection of features. Before the selection of features, the target feature is determined, namely research performance. The selection of features consists of Chi-Square selection (U), and Pearson correlation coefficient (CM). The selection of features produces eight factors contributing to lecturer research performance are Scientific Papers (U: 154.38, CM: 0.79), Number of Citation (U: 95.86, CM: 0.70), Conference (U: 68.67, CM: 0.57), Grade (U: 10.13, CM: 0.29) , Grant (U: 35.40, CM: 0.36), IPR (U: 19.81, CM: 0.27), Qualification (U: 2.57, CM: 0.26), and Grant Awardee (U: 2.66, CM: 0.26). To analyze the factors, two data mining classifiers were involved, Backpropagation Neural Networks (BPNN) and Support Vector Machine (SVM). Evaluation of the data mining classifier with an accuracy score for BPNN of 95 percent, and SVM of 92 percent. The essence of this analysis is not to find the highest accuracy score, but rather whether the factors can pass the test phase with the expected results. The findings of this study reveal the factors that have a significant impact on research performance and vice versa.</abstract><pub>한국인터넷정보학회</pub><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1976-7277 |
ispartof | KSII transactions on Internet and information systems, 2022-01, Vol.16 (1), p.153-172 |
issn | 1976-7277 1976-7277 |
language | kor |
recordid | cdi_kisti_ndsl_JAKO202209059048674 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | backpropagation Factors contributing to research performance selection of features support vector machine |
title | Analyzing Factors Contributing to Research Performance using Backpropagation Neural Network and Support Vector Machine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A45%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kiss_kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20Factors%20Contributing%20to%20Research%20Performance%20using%20Backpropagation%20Neural%20Network%20and%20Support%20Vector%20Machine&rft.jtitle=KSII%20transactions%20on%20Internet%20and%20information%20systems&rft.au=Ermatita,%20Ermatita&rft.date=2022-01-30&rft.volume=16&rft.issue=1&rft.spage=153&rft.epage=172&rft.pages=153-172&rft.issn=1976-7277&rft.eissn=1976-7277&rft_id=info:doi/&rft_dat=%3Ckiss_kisti%3E3930897%3C/kiss_kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_kiss_id=3930897&rfr_iscdi=true |