RadioCycle: Deep Dual Learning based Radio Map Estimation

The estimation of radio map (RM) is a fundamental and critical task for the network planning and optimization performance of mobile communication. In this paper, a RM estimation method is proposed based on a deep dual learning structure. This method can simultaneously and accurately reconstruct the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:KSII transactions on Internet and information systems 2022-11, Vol.16 (11), p.3780-3797
Hauptverfasser: Zheng, Yi, Zhang, Tianqian, Liao, Cunyi, Wang, Ji, Liu, Shouyin
Format: Artikel
Sprache:eng ; kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3797
container_issue 11
container_start_page 3780
container_title KSII transactions on Internet and information systems
container_volume 16
creator Zheng, Yi
Zhang, Tianqian
Liao, Cunyi
Wang, Ji
Liu, Shouyin
description The estimation of radio map (RM) is a fundamental and critical task for the network planning and optimization performance of mobile communication. In this paper, a RM estimation method is proposed based on a deep dual learning structure. This method can simultaneously and accurately reconstruct the urban building map (UBM) and estimate the RM of the whole cell by only part of the measured reference signal receiving power (RSRP). Our proposed method implements UBM reconstruction task and RM estimation task by constructing a dual U-Net-based structure, which is named RadioCycle. RadioCycle jointly trains two symmetric generators of the dual structure. Further, to solve the problem of interference negative transfer in generators trained jointly for two different tasks, RadioCycle introduces a dynamic weighted averaging method to dynamically balance the learning rate of these two generators in the joint training. Eventually, the experiments demonstrate that on the UBM reconstruction task, RadioCycle achieves an F1 score of 0.950, and on the RM estimation task, RadioCycle achieves a root mean square error of 0.069. Therefore, RadioCycle can estimate both the RM and the UBM in a cell with measured RSRP for only 20% of the whole cell.
doi_str_mv 10.3837/tils.2022.11.017
format Article
fullrecord <record><control><sourceid>gale_kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO202204859389345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A731140693</galeid><kiss_id>3985346</kiss_id><sourcerecordid>A731140693</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1175-a87e7913eede83a259650c73aa97874a7fb9f7eef046c05a5ed46ce43af5e9dd3</originalsourceid><addsrcrecordid>eNptj81Lw0AQxRdRsGjvgpeAeEzcze5mdr2Vtn5WCqLnMM1OymKalGw89L93tSIKMod5PH4zj8fYmeCZNBKuBt-ELOd5ngmRcQEHbCQsFCnkAIe_9DEbh-BXXOQmL5QxI2af0fluuqsauk5mRNtk9o5NsiDsW9-ukxUGcskXlDzhNpmHwW9w8F17yo5qbAKNv_cJe72Zv0zv0sXy9n46WaRrIUCnaIDACknkyEjMtS00r0AiWjCgEOqVrYGo5qqouEZNLgpSEmtN1jl5wi73f998zC5bF5ryYfK4_KzLldFWGiuVjtzFnltjQ6Vv627osdr4UJUTkEIoXlgZqewfKo6jja-6lmof_T8H5z_xodz2sX2_K6U1WqpCfgCMGmzd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>RadioCycle: Deep Dual Learning based Radio Map Estimation</title><source>EZB Electronic Journals Library</source><creator>Zheng, Yi ; Zhang, Tianqian ; Liao, Cunyi ; Wang, Ji ; Liu, Shouyin</creator><creatorcontrib>Zheng, Yi ; Zhang, Tianqian ; Liao, Cunyi ; Wang, Ji ; Liu, Shouyin</creatorcontrib><description>The estimation of radio map (RM) is a fundamental and critical task for the network planning and optimization performance of mobile communication. In this paper, a RM estimation method is proposed based on a deep dual learning structure. This method can simultaneously and accurately reconstruct the urban building map (UBM) and estimate the RM of the whole cell by only part of the measured reference signal receiving power (RSRP). Our proposed method implements UBM reconstruction task and RM estimation task by constructing a dual U-Net-based structure, which is named RadioCycle. RadioCycle jointly trains two symmetric generators of the dual structure. Further, to solve the problem of interference negative transfer in generators trained jointly for two different tasks, RadioCycle introduces a dynamic weighted averaging method to dynamically balance the learning rate of these two generators in the joint training. Eventually, the experiments demonstrate that on the UBM reconstruction task, RadioCycle achieves an F1 score of 0.950, and on the RM estimation task, RadioCycle achieves a root mean square error of 0.069. Therefore, RadioCycle can estimate both the RM and the UBM in a cell with measured RSRP for only 20% of the whole cell.</description><identifier>ISSN: 1976-7277</identifier><identifier>EISSN: 1976-7277</identifier><identifier>DOI: 10.3837/tils.2022.11.017</identifier><language>eng ; kor</language><publisher>한국인터넷정보학회</publisher><subject>Algorithms ; deep learning ; Machine learning ; Mathematical optimization ; Methods ; radio map ; RSRP ; U-Net ; urban building map ; Wave propagation</subject><ispartof>KSII transactions on Internet and information systems, 2022-11, Vol.16 (11), p.3780-3797</ispartof><rights>COPYRIGHT 2022 KSII, the Korean Society for Internet Information</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27926,27927</link.rule.ids></links><search><creatorcontrib>Zheng, Yi</creatorcontrib><creatorcontrib>Zhang, Tianqian</creatorcontrib><creatorcontrib>Liao, Cunyi</creatorcontrib><creatorcontrib>Wang, Ji</creatorcontrib><creatorcontrib>Liu, Shouyin</creatorcontrib><title>RadioCycle: Deep Dual Learning based Radio Map Estimation</title><title>KSII transactions on Internet and information systems</title><addtitle>KSII Transactions on Internet and Information Systems (TIIS)</addtitle><description>The estimation of radio map (RM) is a fundamental and critical task for the network planning and optimization performance of mobile communication. In this paper, a RM estimation method is proposed based on a deep dual learning structure. This method can simultaneously and accurately reconstruct the urban building map (UBM) and estimate the RM of the whole cell by only part of the measured reference signal receiving power (RSRP). Our proposed method implements UBM reconstruction task and RM estimation task by constructing a dual U-Net-based structure, which is named RadioCycle. RadioCycle jointly trains two symmetric generators of the dual structure. Further, to solve the problem of interference negative transfer in generators trained jointly for two different tasks, RadioCycle introduces a dynamic weighted averaging method to dynamically balance the learning rate of these two generators in the joint training. Eventually, the experiments demonstrate that on the UBM reconstruction task, RadioCycle achieves an F1 score of 0.950, and on the RM estimation task, RadioCycle achieves a root mean square error of 0.069. Therefore, RadioCycle can estimate both the RM and the UBM in a cell with measured RSRP for only 20% of the whole cell.</description><subject>Algorithms</subject><subject>deep learning</subject><subject>Machine learning</subject><subject>Mathematical optimization</subject><subject>Methods</subject><subject>radio map</subject><subject>RSRP</subject><subject>U-Net</subject><subject>urban building map</subject><subject>Wave propagation</subject><issn>1976-7277</issn><issn>1976-7277</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNptj81Lw0AQxRdRsGjvgpeAeEzcze5mdr2Vtn5WCqLnMM1OymKalGw89L93tSIKMod5PH4zj8fYmeCZNBKuBt-ELOd5ngmRcQEHbCQsFCnkAIe_9DEbh-BXXOQmL5QxI2af0fluuqsauk5mRNtk9o5NsiDsW9-ukxUGcskXlDzhNpmHwW9w8F17yo5qbAKNv_cJe72Zv0zv0sXy9n46WaRrIUCnaIDACknkyEjMtS00r0AiWjCgEOqVrYGo5qqouEZNLgpSEmtN1jl5wi73f998zC5bF5ryYfK4_KzLldFWGiuVjtzFnltjQ6Vv627osdr4UJUTkEIoXlgZqewfKo6jja-6lmof_T8H5z_xodz2sX2_K6U1WqpCfgCMGmzd</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Zheng, Yi</creator><creator>Zhang, Tianqian</creator><creator>Liao, Cunyi</creator><creator>Wang, Ji</creator><creator>Liu, Shouyin</creator><general>한국인터넷정보학회</general><general>KSII, the Korean Society for Internet Information</general><scope>HZB</scope><scope>Q5X</scope><scope>JDI</scope></search><sort><creationdate>20221101</creationdate><title>RadioCycle: Deep Dual Learning based Radio Map Estimation</title><author>Zheng, Yi ; Zhang, Tianqian ; Liao, Cunyi ; Wang, Ji ; Liu, Shouyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1175-a87e7913eede83a259650c73aa97874a7fb9f7eef046c05a5ed46ce43af5e9dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; kor</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>deep learning</topic><topic>Machine learning</topic><topic>Mathematical optimization</topic><topic>Methods</topic><topic>radio map</topic><topic>RSRP</topic><topic>U-Net</topic><topic>urban building map</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Yi</creatorcontrib><creatorcontrib>Zhang, Tianqian</creatorcontrib><creatorcontrib>Liao, Cunyi</creatorcontrib><creatorcontrib>Wang, Ji</creatorcontrib><creatorcontrib>Liu, Shouyin</creatorcontrib><collection>KISS</collection><collection>Korean Studies Information Service System (KISS) B-Type</collection><collection>KoreaScience</collection><jtitle>KSII transactions on Internet and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Yi</au><au>Zhang, Tianqian</au><au>Liao, Cunyi</au><au>Wang, Ji</au><au>Liu, Shouyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RadioCycle: Deep Dual Learning based Radio Map Estimation</atitle><jtitle>KSII transactions on Internet and information systems</jtitle><addtitle>KSII Transactions on Internet and Information Systems (TIIS)</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>16</volume><issue>11</issue><spage>3780</spage><epage>3797</epage><pages>3780-3797</pages><issn>1976-7277</issn><eissn>1976-7277</eissn><abstract>The estimation of radio map (RM) is a fundamental and critical task for the network planning and optimization performance of mobile communication. In this paper, a RM estimation method is proposed based on a deep dual learning structure. This method can simultaneously and accurately reconstruct the urban building map (UBM) and estimate the RM of the whole cell by only part of the measured reference signal receiving power (RSRP). Our proposed method implements UBM reconstruction task and RM estimation task by constructing a dual U-Net-based structure, which is named RadioCycle. RadioCycle jointly trains two symmetric generators of the dual structure. Further, to solve the problem of interference negative transfer in generators trained jointly for two different tasks, RadioCycle introduces a dynamic weighted averaging method to dynamically balance the learning rate of these two generators in the joint training. Eventually, the experiments demonstrate that on the UBM reconstruction task, RadioCycle achieves an F1 score of 0.950, and on the RM estimation task, RadioCycle achieves a root mean square error of 0.069. Therefore, RadioCycle can estimate both the RM and the UBM in a cell with measured RSRP for only 20% of the whole cell.</abstract><pub>한국인터넷정보학회</pub><doi>10.3837/tils.2022.11.017</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1976-7277
ispartof KSII transactions on Internet and information systems, 2022-11, Vol.16 (11), p.3780-3797
issn 1976-7277
1976-7277
language eng ; kor
recordid cdi_kisti_ndsl_JAKO202204859389345
source EZB Electronic Journals Library
subjects Algorithms
deep learning
Machine learning
Mathematical optimization
Methods
radio map
RSRP
U-Net
urban building map
Wave propagation
title RadioCycle: Deep Dual Learning based Radio Map Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T20%3A53%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RadioCycle:%20Deep%20Dual%20Learning%20based%20Radio%20Map%20Estimation&rft.jtitle=KSII%20transactions%20on%20Internet%20and%20information%20systems&rft.au=Zheng,%20Yi&rft.date=2022-11-01&rft.volume=16&rft.issue=11&rft.spage=3780&rft.epage=3797&rft.pages=3780-3797&rft.issn=1976-7277&rft.eissn=1976-7277&rft_id=info:doi/10.3837/tils.2022.11.017&rft_dat=%3Cgale_kisti%3EA731140693%3C/gale_kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A731140693&rft_kiss_id=3985346&rfr_iscdi=true