RadioCycle: Deep Dual Learning based Radio Map Estimation
The estimation of radio map (RM) is a fundamental and critical task for the network planning and optimization performance of mobile communication. In this paper, a RM estimation method is proposed based on a deep dual learning structure. This method can simultaneously and accurately reconstruct the...
Gespeichert in:
Veröffentlicht in: | KSII transactions on Internet and information systems 2022-11, Vol.16 (11), p.3780-3797 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng ; kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3797 |
---|---|
container_issue | 11 |
container_start_page | 3780 |
container_title | KSII transactions on Internet and information systems |
container_volume | 16 |
creator | Zheng, Yi Zhang, Tianqian Liao, Cunyi Wang, Ji Liu, Shouyin |
description | The estimation of radio map (RM) is a fundamental and critical task for the network planning and optimization performance of mobile communication. In this paper, a RM estimation method is proposed based on a deep dual learning structure. This method can simultaneously and accurately reconstruct the urban building map (UBM) and estimate the RM of the whole cell by only part of the measured reference signal receiving power (RSRP). Our proposed method implements UBM reconstruction task and RM estimation task by constructing a dual U-Net-based structure, which is named RadioCycle. RadioCycle jointly trains two symmetric generators of the dual structure. Further, to solve the problem of interference negative transfer in generators trained jointly for two different tasks, RadioCycle introduces a dynamic weighted averaging method to dynamically balance the learning rate of these two generators in the joint training. Eventually, the experiments demonstrate that on the UBM reconstruction task, RadioCycle achieves an F1 score of 0.950, and on the RM estimation task, RadioCycle achieves a root mean square error of 0.069. Therefore, RadioCycle can estimate both the RM and the UBM in a cell with measured RSRP for only 20% of the whole cell. |
doi_str_mv | 10.3837/tils.2022.11.017 |
format | Article |
fullrecord | <record><control><sourceid>gale_kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO202204859389345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A731140693</galeid><kiss_id>3985346</kiss_id><sourcerecordid>A731140693</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1175-a87e7913eede83a259650c73aa97874a7fb9f7eef046c05a5ed46ce43af5e9dd3</originalsourceid><addsrcrecordid>eNptj81Lw0AQxRdRsGjvgpeAeEzcze5mdr2Vtn5WCqLnMM1OymKalGw89L93tSIKMod5PH4zj8fYmeCZNBKuBt-ELOd5ngmRcQEHbCQsFCnkAIe_9DEbh-BXXOQmL5QxI2af0fluuqsauk5mRNtk9o5NsiDsW9-ukxUGcskXlDzhNpmHwW9w8F17yo5qbAKNv_cJe72Zv0zv0sXy9n46WaRrIUCnaIDACknkyEjMtS00r0AiWjCgEOqVrYGo5qqouEZNLgpSEmtN1jl5wi73f998zC5bF5ryYfK4_KzLldFWGiuVjtzFnltjQ6Vv627osdr4UJUTkEIoXlgZqewfKo6jja-6lmof_T8H5z_xodz2sX2_K6U1WqpCfgCMGmzd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>RadioCycle: Deep Dual Learning based Radio Map Estimation</title><source>EZB Electronic Journals Library</source><creator>Zheng, Yi ; Zhang, Tianqian ; Liao, Cunyi ; Wang, Ji ; Liu, Shouyin</creator><creatorcontrib>Zheng, Yi ; Zhang, Tianqian ; Liao, Cunyi ; Wang, Ji ; Liu, Shouyin</creatorcontrib><description>The estimation of radio map (RM) is a fundamental and critical task for the network planning and optimization performance of mobile communication. In this paper, a RM estimation method is proposed based on a deep dual learning structure. This method can simultaneously and accurately reconstruct the urban building map (UBM) and estimate the RM of the whole cell by only part of the measured reference signal receiving power (RSRP). Our proposed method implements UBM reconstruction task and RM estimation task by constructing a dual U-Net-based structure, which is named RadioCycle. RadioCycle jointly trains two symmetric generators of the dual structure. Further, to solve the problem of interference negative transfer in generators trained jointly for two different tasks, RadioCycle introduces a dynamic weighted averaging method to dynamically balance the learning rate of these two generators in the joint training. Eventually, the experiments demonstrate that on the UBM reconstruction task, RadioCycle achieves an F1 score of 0.950, and on the RM estimation task, RadioCycle achieves a root mean square error of 0.069. Therefore, RadioCycle can estimate both the RM and the UBM in a cell with measured RSRP for only 20% of the whole cell.</description><identifier>ISSN: 1976-7277</identifier><identifier>EISSN: 1976-7277</identifier><identifier>DOI: 10.3837/tils.2022.11.017</identifier><language>eng ; kor</language><publisher>한국인터넷정보학회</publisher><subject>Algorithms ; deep learning ; Machine learning ; Mathematical optimization ; Methods ; radio map ; RSRP ; U-Net ; urban building map ; Wave propagation</subject><ispartof>KSII transactions on Internet and information systems, 2022-11, Vol.16 (11), p.3780-3797</ispartof><rights>COPYRIGHT 2022 KSII, the Korean Society for Internet Information</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27926,27927</link.rule.ids></links><search><creatorcontrib>Zheng, Yi</creatorcontrib><creatorcontrib>Zhang, Tianqian</creatorcontrib><creatorcontrib>Liao, Cunyi</creatorcontrib><creatorcontrib>Wang, Ji</creatorcontrib><creatorcontrib>Liu, Shouyin</creatorcontrib><title>RadioCycle: Deep Dual Learning based Radio Map Estimation</title><title>KSII transactions on Internet and information systems</title><addtitle>KSII Transactions on Internet and Information Systems (TIIS)</addtitle><description>The estimation of radio map (RM) is a fundamental and critical task for the network planning and optimization performance of mobile communication. In this paper, a RM estimation method is proposed based on a deep dual learning structure. This method can simultaneously and accurately reconstruct the urban building map (UBM) and estimate the RM of the whole cell by only part of the measured reference signal receiving power (RSRP). Our proposed method implements UBM reconstruction task and RM estimation task by constructing a dual U-Net-based structure, which is named RadioCycle. RadioCycle jointly trains two symmetric generators of the dual structure. Further, to solve the problem of interference negative transfer in generators trained jointly for two different tasks, RadioCycle introduces a dynamic weighted averaging method to dynamically balance the learning rate of these two generators in the joint training. Eventually, the experiments demonstrate that on the UBM reconstruction task, RadioCycle achieves an F1 score of 0.950, and on the RM estimation task, RadioCycle achieves a root mean square error of 0.069. Therefore, RadioCycle can estimate both the RM and the UBM in a cell with measured RSRP for only 20% of the whole cell.</description><subject>Algorithms</subject><subject>deep learning</subject><subject>Machine learning</subject><subject>Mathematical optimization</subject><subject>Methods</subject><subject>radio map</subject><subject>RSRP</subject><subject>U-Net</subject><subject>urban building map</subject><subject>Wave propagation</subject><issn>1976-7277</issn><issn>1976-7277</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNptj81Lw0AQxRdRsGjvgpeAeEzcze5mdr2Vtn5WCqLnMM1OymKalGw89L93tSIKMod5PH4zj8fYmeCZNBKuBt-ELOd5ngmRcQEHbCQsFCnkAIe_9DEbh-BXXOQmL5QxI2af0fluuqsauk5mRNtk9o5NsiDsW9-ukxUGcskXlDzhNpmHwW9w8F17yo5qbAKNv_cJe72Zv0zv0sXy9n46WaRrIUCnaIDACknkyEjMtS00r0AiWjCgEOqVrYGo5qqouEZNLgpSEmtN1jl5wi73f998zC5bF5ryYfK4_KzLldFWGiuVjtzFnltjQ6Vv627osdr4UJUTkEIoXlgZqewfKo6jja-6lmof_T8H5z_xodz2sX2_K6U1WqpCfgCMGmzd</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Zheng, Yi</creator><creator>Zhang, Tianqian</creator><creator>Liao, Cunyi</creator><creator>Wang, Ji</creator><creator>Liu, Shouyin</creator><general>한국인터넷정보학회</general><general>KSII, the Korean Society for Internet Information</general><scope>HZB</scope><scope>Q5X</scope><scope>JDI</scope></search><sort><creationdate>20221101</creationdate><title>RadioCycle: Deep Dual Learning based Radio Map Estimation</title><author>Zheng, Yi ; Zhang, Tianqian ; Liao, Cunyi ; Wang, Ji ; Liu, Shouyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1175-a87e7913eede83a259650c73aa97874a7fb9f7eef046c05a5ed46ce43af5e9dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; kor</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>deep learning</topic><topic>Machine learning</topic><topic>Mathematical optimization</topic><topic>Methods</topic><topic>radio map</topic><topic>RSRP</topic><topic>U-Net</topic><topic>urban building map</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Yi</creatorcontrib><creatorcontrib>Zhang, Tianqian</creatorcontrib><creatorcontrib>Liao, Cunyi</creatorcontrib><creatorcontrib>Wang, Ji</creatorcontrib><creatorcontrib>Liu, Shouyin</creatorcontrib><collection>KISS</collection><collection>Korean Studies Information Service System (KISS) B-Type</collection><collection>KoreaScience</collection><jtitle>KSII transactions on Internet and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Yi</au><au>Zhang, Tianqian</au><au>Liao, Cunyi</au><au>Wang, Ji</au><au>Liu, Shouyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RadioCycle: Deep Dual Learning based Radio Map Estimation</atitle><jtitle>KSII transactions on Internet and information systems</jtitle><addtitle>KSII Transactions on Internet and Information Systems (TIIS)</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>16</volume><issue>11</issue><spage>3780</spage><epage>3797</epage><pages>3780-3797</pages><issn>1976-7277</issn><eissn>1976-7277</eissn><abstract>The estimation of radio map (RM) is a fundamental and critical task for the network planning and optimization performance of mobile communication. In this paper, a RM estimation method is proposed based on a deep dual learning structure. This method can simultaneously and accurately reconstruct the urban building map (UBM) and estimate the RM of the whole cell by only part of the measured reference signal receiving power (RSRP). Our proposed method implements UBM reconstruction task and RM estimation task by constructing a dual U-Net-based structure, which is named RadioCycle. RadioCycle jointly trains two symmetric generators of the dual structure. Further, to solve the problem of interference negative transfer in generators trained jointly for two different tasks, RadioCycle introduces a dynamic weighted averaging method to dynamically balance the learning rate of these two generators in the joint training. Eventually, the experiments demonstrate that on the UBM reconstruction task, RadioCycle achieves an F1 score of 0.950, and on the RM estimation task, RadioCycle achieves a root mean square error of 0.069. Therefore, RadioCycle can estimate both the RM and the UBM in a cell with measured RSRP for only 20% of the whole cell.</abstract><pub>한국인터넷정보학회</pub><doi>10.3837/tils.2022.11.017</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1976-7277 |
ispartof | KSII transactions on Internet and information systems, 2022-11, Vol.16 (11), p.3780-3797 |
issn | 1976-7277 1976-7277 |
language | eng ; kor |
recordid | cdi_kisti_ndsl_JAKO202204859389345 |
source | EZB Electronic Journals Library |
subjects | Algorithms deep learning Machine learning Mathematical optimization Methods radio map RSRP U-Net urban building map Wave propagation |
title | RadioCycle: Deep Dual Learning based Radio Map Estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T20%3A53%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RadioCycle:%20Deep%20Dual%20Learning%20based%20Radio%20Map%20Estimation&rft.jtitle=KSII%20transactions%20on%20Internet%20and%20information%20systems&rft.au=Zheng,%20Yi&rft.date=2022-11-01&rft.volume=16&rft.issue=11&rft.spage=3780&rft.epage=3797&rft.pages=3780-3797&rft.issn=1976-7277&rft.eissn=1976-7277&rft_id=info:doi/10.3837/tils.2022.11.017&rft_dat=%3Cgale_kisti%3EA731140693%3C/gale_kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A731140693&rft_kiss_id=3985346&rfr_iscdi=true |