Gamma ray interactions based optimization algorithm: Application in radioisotope identification

This work proposes a new efficient meta-heuristic optimization algorithm called Gamma Ray Interactions Based Optimization (GRIBO). The algorithm mimics different energy loss processes of a gamma-ray photon during its passage through a matter. The proposed novel algorithm has been applied to search f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear engineering and technology 2021, Vol.53 (11), p.3772-3783
Hauptverfasser: Ghalehasadi, Aydin, Ashrafi, Saleh, Alizadeh, Davood, Meric, Niyazi
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3783
container_issue 11
container_start_page 3772
container_title Nuclear engineering and technology
container_volume 53
creator Ghalehasadi, Aydin
Ashrafi, Saleh
Alizadeh, Davood
Meric, Niyazi
description This work proposes a new efficient meta-heuristic optimization algorithm called Gamma Ray Interactions Based Optimization (GRIBO). The algorithm mimics different energy loss processes of a gamma-ray photon during its passage through a matter. The proposed novel algorithm has been applied to search for the global minima of 30 standard benchmark functions. The paper also considers solving real optimization problem in the field of nuclear engineering, radioisotope identification. The results are compared with those obtained by the Particle Swarm Optimization, Genetic Algorithm, Gravitational Search Algorithm and Grey Wolf Optimizer algorithms. The comparisons indicate that the GRIBO algorithm is able to provide very competitive results compared to other well-known meta-heuristics.
format Article
fullrecord <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO202132238564785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO202132238564785</sourcerecordid><originalsourceid>FETCH-kisti_ndsl_JAKO2021322385647853</originalsourceid><addsrcrecordid>eNqNjrsKwjAYhYMoWLTvkMWx0CSNDW5FvKCDi4NbSdtUf8ylNFn06a3YB3A68J3vwJmgiFKWJYyL2xRFJGci4TljcxR7D1WaUUJSLkiEyoM0RuJevjDYoHpZB3DW40p61WDXBTDwll-Gpb67HsLDbHDRdRrqHwY7rBtw4F1wncLQKBugHeslmrVSexWPuUCr_e66PSZP8AFK23hdnorzhaaUsOGz4OssF5z9630A6SZGMA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gamma ray interactions based optimization algorithm: Application in radioisotope identification</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Ghalehasadi, Aydin ; Ashrafi, Saleh ; Alizadeh, Davood ; Meric, Niyazi</creator><creatorcontrib>Ghalehasadi, Aydin ; Ashrafi, Saleh ; Alizadeh, Davood ; Meric, Niyazi</creatorcontrib><description>This work proposes a new efficient meta-heuristic optimization algorithm called Gamma Ray Interactions Based Optimization (GRIBO). The algorithm mimics different energy loss processes of a gamma-ray photon during its passage through a matter. The proposed novel algorithm has been applied to search for the global minima of 30 standard benchmark functions. The paper also considers solving real optimization problem in the field of nuclear engineering, radioisotope identification. The results are compared with those obtained by the Particle Swarm Optimization, Genetic Algorithm, Gravitational Search Algorithm and Grey Wolf Optimizer algorithms. The comparisons indicate that the GRIBO algorithm is able to provide very competitive results compared to other well-known meta-heuristics.</description><identifier>ISSN: 1738-5733</identifier><identifier>EISSN: 2234-358X</identifier><language>kor</language><ispartof>Nuclear engineering and technology, 2021, Vol.53 (11), p.3772-3783</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4022</link.rule.ids></links><search><creatorcontrib>Ghalehasadi, Aydin</creatorcontrib><creatorcontrib>Ashrafi, Saleh</creatorcontrib><creatorcontrib>Alizadeh, Davood</creatorcontrib><creatorcontrib>Meric, Niyazi</creatorcontrib><title>Gamma ray interactions based optimization algorithm: Application in radioisotope identification</title><title>Nuclear engineering and technology</title><addtitle>Nuclear engineering and technology : an international journal of the Korean Nuclear Society</addtitle><description>This work proposes a new efficient meta-heuristic optimization algorithm called Gamma Ray Interactions Based Optimization (GRIBO). The algorithm mimics different energy loss processes of a gamma-ray photon during its passage through a matter. The proposed novel algorithm has been applied to search for the global minima of 30 standard benchmark functions. The paper also considers solving real optimization problem in the field of nuclear engineering, radioisotope identification. The results are compared with those obtained by the Particle Swarm Optimization, Genetic Algorithm, Gravitational Search Algorithm and Grey Wolf Optimizer algorithms. The comparisons indicate that the GRIBO algorithm is able to provide very competitive results compared to other well-known meta-heuristics.</description><issn>1738-5733</issn><issn>2234-358X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNqNjrsKwjAYhYMoWLTvkMWx0CSNDW5FvKCDi4NbSdtUf8ylNFn06a3YB3A68J3vwJmgiFKWJYyL2xRFJGci4TljcxR7D1WaUUJSLkiEyoM0RuJevjDYoHpZB3DW40p61WDXBTDwll-Gpb67HsLDbHDRdRrqHwY7rBtw4F1wncLQKBugHeslmrVSexWPuUCr_e66PSZP8AFK23hdnorzhaaUsOGz4OssF5z9630A6SZGMA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ghalehasadi, Aydin</creator><creator>Ashrafi, Saleh</creator><creator>Alizadeh, Davood</creator><creator>Meric, Niyazi</creator><scope>JDI</scope></search><sort><creationdate>2021</creationdate><title>Gamma ray interactions based optimization algorithm: Application in radioisotope identification</title><author>Ghalehasadi, Aydin ; Ashrafi, Saleh ; Alizadeh, Davood ; Meric, Niyazi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kisti_ndsl_JAKO2021322385647853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghalehasadi, Aydin</creatorcontrib><creatorcontrib>Ashrafi, Saleh</creatorcontrib><creatorcontrib>Alizadeh, Davood</creatorcontrib><creatorcontrib>Meric, Niyazi</creatorcontrib><collection>KoreaScience</collection><jtitle>Nuclear engineering and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghalehasadi, Aydin</au><au>Ashrafi, Saleh</au><au>Alizadeh, Davood</au><au>Meric, Niyazi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gamma ray interactions based optimization algorithm: Application in radioisotope identification</atitle><jtitle>Nuclear engineering and technology</jtitle><addtitle>Nuclear engineering and technology : an international journal of the Korean Nuclear Society</addtitle><date>2021</date><risdate>2021</risdate><volume>53</volume><issue>11</issue><spage>3772</spage><epage>3783</epage><pages>3772-3783</pages><issn>1738-5733</issn><eissn>2234-358X</eissn><abstract>This work proposes a new efficient meta-heuristic optimization algorithm called Gamma Ray Interactions Based Optimization (GRIBO). The algorithm mimics different energy loss processes of a gamma-ray photon during its passage through a matter. The proposed novel algorithm has been applied to search for the global minima of 30 standard benchmark functions. The paper also considers solving real optimization problem in the field of nuclear engineering, radioisotope identification. The results are compared with those obtained by the Particle Swarm Optimization, Genetic Algorithm, Gravitational Search Algorithm and Grey Wolf Optimizer algorithms. The comparisons indicate that the GRIBO algorithm is able to provide very competitive results compared to other well-known meta-heuristics.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1738-5733
ispartof Nuclear engineering and technology, 2021, Vol.53 (11), p.3772-3783
issn 1738-5733
2234-358X
language kor
recordid cdi_kisti_ndsl_JAKO202132238564785
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title Gamma ray interactions based optimization algorithm: Application in radioisotope identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gamma%20ray%20interactions%20based%20optimization%20algorithm:%20Application%20in%20radioisotope%20identification&rft.jtitle=Nuclear%20engineering%20and%20technology&rft.au=Ghalehasadi,%20Aydin&rft.date=2021&rft.volume=53&rft.issue=11&rft.spage=3772&rft.epage=3783&rft.pages=3772-3783&rft.issn=1738-5733&rft.eissn=2234-358X&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO202132238564785%3C/kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true