Gamma ray interactions based optimization algorithm: Application in radioisotope identification
This work proposes a new efficient meta-heuristic optimization algorithm called Gamma Ray Interactions Based Optimization (GRIBO). The algorithm mimics different energy loss processes of a gamma-ray photon during its passage through a matter. The proposed novel algorithm has been applied to search f...
Gespeichert in:
Veröffentlicht in: | Nuclear engineering and technology 2021, Vol.53 (11), p.3772-3783 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3783 |
---|---|
container_issue | 11 |
container_start_page | 3772 |
container_title | Nuclear engineering and technology |
container_volume | 53 |
creator | Ghalehasadi, Aydin Ashrafi, Saleh Alizadeh, Davood Meric, Niyazi |
description | This work proposes a new efficient meta-heuristic optimization algorithm called Gamma Ray Interactions Based Optimization (GRIBO). The algorithm mimics different energy loss processes of a gamma-ray photon during its passage through a matter. The proposed novel algorithm has been applied to search for the global minima of 30 standard benchmark functions. The paper also considers solving real optimization problem in the field of nuclear engineering, radioisotope identification. The results are compared with those obtained by the Particle Swarm Optimization, Genetic Algorithm, Gravitational Search Algorithm and Grey Wolf Optimizer algorithms. The comparisons indicate that the GRIBO algorithm is able to provide very competitive results compared to other well-known meta-heuristics. |
format | Article |
fullrecord | <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO202132238564785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO202132238564785</sourcerecordid><originalsourceid>FETCH-kisti_ndsl_JAKO2021322385647853</originalsourceid><addsrcrecordid>eNqNjrsKwjAYhYMoWLTvkMWx0CSNDW5FvKCDi4NbSdtUf8ylNFn06a3YB3A68J3vwJmgiFKWJYyL2xRFJGci4TljcxR7D1WaUUJSLkiEyoM0RuJevjDYoHpZB3DW40p61WDXBTDwll-Gpb67HsLDbHDRdRrqHwY7rBtw4F1wncLQKBugHeslmrVSexWPuUCr_e66PSZP8AFK23hdnorzhaaUsOGz4OssF5z9630A6SZGMA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gamma ray interactions based optimization algorithm: Application in radioisotope identification</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Ghalehasadi, Aydin ; Ashrafi, Saleh ; Alizadeh, Davood ; Meric, Niyazi</creator><creatorcontrib>Ghalehasadi, Aydin ; Ashrafi, Saleh ; Alizadeh, Davood ; Meric, Niyazi</creatorcontrib><description>This work proposes a new efficient meta-heuristic optimization algorithm called Gamma Ray Interactions Based Optimization (GRIBO). The algorithm mimics different energy loss processes of a gamma-ray photon during its passage through a matter. The proposed novel algorithm has been applied to search for the global minima of 30 standard benchmark functions. The paper also considers solving real optimization problem in the field of nuclear engineering, radioisotope identification. The results are compared with those obtained by the Particle Swarm Optimization, Genetic Algorithm, Gravitational Search Algorithm and Grey Wolf Optimizer algorithms. The comparisons indicate that the GRIBO algorithm is able to provide very competitive results compared to other well-known meta-heuristics.</description><identifier>ISSN: 1738-5733</identifier><identifier>EISSN: 2234-358X</identifier><language>kor</language><ispartof>Nuclear engineering and technology, 2021, Vol.53 (11), p.3772-3783</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4022</link.rule.ids></links><search><creatorcontrib>Ghalehasadi, Aydin</creatorcontrib><creatorcontrib>Ashrafi, Saleh</creatorcontrib><creatorcontrib>Alizadeh, Davood</creatorcontrib><creatorcontrib>Meric, Niyazi</creatorcontrib><title>Gamma ray interactions based optimization algorithm: Application in radioisotope identification</title><title>Nuclear engineering and technology</title><addtitle>Nuclear engineering and technology : an international journal of the Korean Nuclear Society</addtitle><description>This work proposes a new efficient meta-heuristic optimization algorithm called Gamma Ray Interactions Based Optimization (GRIBO). The algorithm mimics different energy loss processes of a gamma-ray photon during its passage through a matter. The proposed novel algorithm has been applied to search for the global minima of 30 standard benchmark functions. The paper also considers solving real optimization problem in the field of nuclear engineering, radioisotope identification. The results are compared with those obtained by the Particle Swarm Optimization, Genetic Algorithm, Gravitational Search Algorithm and Grey Wolf Optimizer algorithms. The comparisons indicate that the GRIBO algorithm is able to provide very competitive results compared to other well-known meta-heuristics.</description><issn>1738-5733</issn><issn>2234-358X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNqNjrsKwjAYhYMoWLTvkMWx0CSNDW5FvKCDi4NbSdtUf8ylNFn06a3YB3A68J3vwJmgiFKWJYyL2xRFJGci4TljcxR7D1WaUUJSLkiEyoM0RuJevjDYoHpZB3DW40p61WDXBTDwll-Gpb67HsLDbHDRdRrqHwY7rBtw4F1wncLQKBugHeslmrVSexWPuUCr_e66PSZP8AFK23hdnorzhaaUsOGz4OssF5z9630A6SZGMA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ghalehasadi, Aydin</creator><creator>Ashrafi, Saleh</creator><creator>Alizadeh, Davood</creator><creator>Meric, Niyazi</creator><scope>JDI</scope></search><sort><creationdate>2021</creationdate><title>Gamma ray interactions based optimization algorithm: Application in radioisotope identification</title><author>Ghalehasadi, Aydin ; Ashrafi, Saleh ; Alizadeh, Davood ; Meric, Niyazi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kisti_ndsl_JAKO2021322385647853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghalehasadi, Aydin</creatorcontrib><creatorcontrib>Ashrafi, Saleh</creatorcontrib><creatorcontrib>Alizadeh, Davood</creatorcontrib><creatorcontrib>Meric, Niyazi</creatorcontrib><collection>KoreaScience</collection><jtitle>Nuclear engineering and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghalehasadi, Aydin</au><au>Ashrafi, Saleh</au><au>Alizadeh, Davood</au><au>Meric, Niyazi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gamma ray interactions based optimization algorithm: Application in radioisotope identification</atitle><jtitle>Nuclear engineering and technology</jtitle><addtitle>Nuclear engineering and technology : an international journal of the Korean Nuclear Society</addtitle><date>2021</date><risdate>2021</risdate><volume>53</volume><issue>11</issue><spage>3772</spage><epage>3783</epage><pages>3772-3783</pages><issn>1738-5733</issn><eissn>2234-358X</eissn><abstract>This work proposes a new efficient meta-heuristic optimization algorithm called Gamma Ray Interactions Based Optimization (GRIBO). The algorithm mimics different energy loss processes of a gamma-ray photon during its passage through a matter. The proposed novel algorithm has been applied to search for the global minima of 30 standard benchmark functions. The paper also considers solving real optimization problem in the field of nuclear engineering, radioisotope identification. The results are compared with those obtained by the Particle Swarm Optimization, Genetic Algorithm, Gravitational Search Algorithm and Grey Wolf Optimizer algorithms. The comparisons indicate that the GRIBO algorithm is able to provide very competitive results compared to other well-known meta-heuristics.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1738-5733 |
ispartof | Nuclear engineering and technology, 2021, Vol.53 (11), p.3772-3783 |
issn | 1738-5733 2234-358X |
language | kor |
recordid | cdi_kisti_ndsl_JAKO202132238564785 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
title | Gamma ray interactions based optimization algorithm: Application in radioisotope identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gamma%20ray%20interactions%20based%20optimization%20algorithm:%20Application%20in%20radioisotope%20identification&rft.jtitle=Nuclear%20engineering%20and%20technology&rft.au=Ghalehasadi,%20Aydin&rft.date=2021&rft.volume=53&rft.issue=11&rft.spage=3772&rft.epage=3783&rft.pages=3772-3783&rft.issn=1738-5733&rft.eissn=2234-358X&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO202132238564785%3C/kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |