Intelligent Hybrid Fusion Algorithm with Vision Patterns for Generation of Precise Digital Road Maps in Self-driving Vehicles

Due to the significant increase in the use of autonomous car technology, it is essential to integrate this technology with high-precision digital map data containing more precise and accurate roadway information, as compared to existing conventional map resources, to ensure the safety of self-drivin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:KSII transactions on Internet and information systems 2020-10, Vol.14 (10), p.3955-3971
Hauptverfasser: Jung, Juho, Park, Manbok, Cho, Kuk, Mun, Cheol, Ahn, Junho
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3971
container_issue 10
container_start_page 3955
container_title KSII transactions on Internet and information systems
container_volume 14
creator Jung, Juho
Park, Manbok
Cho, Kuk
Mun, Cheol
Ahn, Junho
description Due to the significant increase in the use of autonomous car technology, it is essential to integrate this technology with high-precision digital map data containing more precise and accurate roadway information, as compared to existing conventional map resources, to ensure the safety of self-driving operations. While existing map technologies may assist vehicles in identifying their locations via Global Positioning System, it is however difficult to update the environmental changes of roadways in these maps. Roadway vision algorithms can be useful for building autonomous vehicles that can avoid accidents and detect real-time location changes. We incorporate a hybrid architectural design that combines unsupervised classification of vision data with supervised joint fusion classification to achieve a better noise-resistant algorithm. We identify, via a deep learning approach, an intelligent hybrid fusion algorithm for fusing multimodal vision feature data for roadway classifications and characterize its improvement in accuracy over unsupervised identifications using image processing and supervised vision classifiers. We analyzed over 93,000 vision frame data collected from a test vehicle in real roadways. The performance indicators of the proposed hybrid fusion algorithm are successfully evaluated for the generation of roadway digital maps for autonomous vehicles, with a recall of 0.94, precision of 0.96, and accuracy of 0.92.
format Article
fullrecord <record><control><sourceid>kiss_kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO202032265179330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><kiss_id>3834274</kiss_id><sourcerecordid>3834274</sourcerecordid><originalsourceid>FETCH-LOGICAL-k500-c4301ea898f573c6e6338bd10d2c84626e7da3b08f0b68c43f5a614b7c59a38c3</originalsourceid><addsrcrecordid>eNpNjEtLAzEYRQdRsNT-AjfZuBzIJDNJZlmqfWjFoqXbIZPH9KNppiRR6cL_bn0gbu69HA73LBsUNWc5J5yf_9uX2ShGaHFBBGGlEIPsY-GTcQ464xOaH9sAGk1fI_QejV3XB0jbPXo_JdrAN13JlEzwEdk-oJnxJsj0xXuLVsEoiAbdQgdJOvTcS40e5SEi8OjFOJvrAG_gO7QxW1DOxKvswkoXzei3h9l6ereezPPl02wxGS_zXYVxrkqKCyNFLWzFqWKGUSpaXWBNlCgZYYZrSVssLG6ZONm2kqwoW66qWlKh6DC7-bndQUzQeB1dcz9-eCKYYEoIqwpeU4pP3vWfF5tDgL0Mx4YKWhJe0k_RWWSJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Intelligent Hybrid Fusion Algorithm with Vision Patterns for Generation of Precise Digital Road Maps in Self-driving Vehicles</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jung, Juho ; Park, Manbok ; Cho, Kuk ; Mun, Cheol ; Ahn, Junho</creator><creatorcontrib>Jung, Juho ; Park, Manbok ; Cho, Kuk ; Mun, Cheol ; Ahn, Junho</creatorcontrib><description>Due to the significant increase in the use of autonomous car technology, it is essential to integrate this technology with high-precision digital map data containing more precise and accurate roadway information, as compared to existing conventional map resources, to ensure the safety of self-driving operations. While existing map technologies may assist vehicles in identifying their locations via Global Positioning System, it is however difficult to update the environmental changes of roadways in these maps. Roadway vision algorithms can be useful for building autonomous vehicles that can avoid accidents and detect real-time location changes. We incorporate a hybrid architectural design that combines unsupervised classification of vision data with supervised joint fusion classification to achieve a better noise-resistant algorithm. We identify, via a deep learning approach, an intelligent hybrid fusion algorithm for fusing multimodal vision feature data for roadway classifications and characterize its improvement in accuracy over unsupervised identifications using image processing and supervised vision classifiers. We analyzed over 93,000 vision frame data collected from a test vehicle in real roadways. The performance indicators of the proposed hybrid fusion algorithm are successfully evaluated for the generation of roadway digital maps for autonomous vehicles, with a recall of 0.94, precision of 0.96, and accuracy of 0.92.</description><identifier>ISSN: 1976-7277</identifier><identifier>EISSN: 1976-7277</identifier><language>kor</language><publisher>한국인터넷정보학회</publisher><subject>Deep learning ; High precision digital map ; Intelligence ; Self-driving vehicles ; Vision</subject><ispartof>KSII transactions on Internet and information systems, 2020-10, Vol.14 (10), p.3955-3971</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids></links><search><creatorcontrib>Jung, Juho</creatorcontrib><creatorcontrib>Park, Manbok</creatorcontrib><creatorcontrib>Cho, Kuk</creatorcontrib><creatorcontrib>Mun, Cheol</creatorcontrib><creatorcontrib>Ahn, Junho</creatorcontrib><title>Intelligent Hybrid Fusion Algorithm with Vision Patterns for Generation of Precise Digital Road Maps in Self-driving Vehicles</title><title>KSII transactions on Internet and information systems</title><addtitle>KSII Transactions on Internet and Information Systems (TIIS)</addtitle><description>Due to the significant increase in the use of autonomous car technology, it is essential to integrate this technology with high-precision digital map data containing more precise and accurate roadway information, as compared to existing conventional map resources, to ensure the safety of self-driving operations. While existing map technologies may assist vehicles in identifying their locations via Global Positioning System, it is however difficult to update the environmental changes of roadways in these maps. Roadway vision algorithms can be useful for building autonomous vehicles that can avoid accidents and detect real-time location changes. We incorporate a hybrid architectural design that combines unsupervised classification of vision data with supervised joint fusion classification to achieve a better noise-resistant algorithm. We identify, via a deep learning approach, an intelligent hybrid fusion algorithm for fusing multimodal vision feature data for roadway classifications and characterize its improvement in accuracy over unsupervised identifications using image processing and supervised vision classifiers. We analyzed over 93,000 vision frame data collected from a test vehicle in real roadways. The performance indicators of the proposed hybrid fusion algorithm are successfully evaluated for the generation of roadway digital maps for autonomous vehicles, with a recall of 0.94, precision of 0.96, and accuracy of 0.92.</description><subject>Deep learning</subject><subject>High precision digital map</subject><subject>Intelligence</subject><subject>Self-driving vehicles</subject><subject>Vision</subject><issn>1976-7277</issn><issn>1976-7277</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNpNjEtLAzEYRQdRsNT-AjfZuBzIJDNJZlmqfWjFoqXbIZPH9KNppiRR6cL_bn0gbu69HA73LBsUNWc5J5yf_9uX2ShGaHFBBGGlEIPsY-GTcQ464xOaH9sAGk1fI_QejV3XB0jbPXo_JdrAN13JlEzwEdk-oJnxJsj0xXuLVsEoiAbdQgdJOvTcS40e5SEi8OjFOJvrAG_gO7QxW1DOxKvswkoXzei3h9l6ereezPPl02wxGS_zXYVxrkqKCyNFLWzFqWKGUSpaXWBNlCgZYYZrSVssLG6ZONm2kqwoW66qWlKh6DC7-bndQUzQeB1dcz9-eCKYYEoIqwpeU4pP3vWfF5tDgL0Mx4YKWhJe0k_RWWSJ</recordid><startdate>20201030</startdate><enddate>20201030</enddate><creator>Jung, Juho</creator><creator>Park, Manbok</creator><creator>Cho, Kuk</creator><creator>Mun, Cheol</creator><creator>Ahn, Junho</creator><general>한국인터넷정보학회</general><scope>HZB</scope><scope>Q5X</scope><scope>JDI</scope></search><sort><creationdate>20201030</creationdate><title>Intelligent Hybrid Fusion Algorithm with Vision Patterns for Generation of Precise Digital Road Maps in Self-driving Vehicles</title><author>Jung, Juho ; Park, Manbok ; Cho, Kuk ; Mun, Cheol ; Ahn, Junho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-k500-c4301ea898f573c6e6338bd10d2c84626e7da3b08f0b68c43f5a614b7c59a38c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2020</creationdate><topic>Deep learning</topic><topic>High precision digital map</topic><topic>Intelligence</topic><topic>Self-driving vehicles</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Juho</creatorcontrib><creatorcontrib>Park, Manbok</creatorcontrib><creatorcontrib>Cho, Kuk</creatorcontrib><creatorcontrib>Mun, Cheol</creatorcontrib><creatorcontrib>Ahn, Junho</creatorcontrib><collection>Korean Studies Information Service System (KISS)</collection><collection>Korean Studies Information Service System (KISS) B-Type</collection><collection>KoreaScience</collection><jtitle>KSII transactions on Internet and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Juho</au><au>Park, Manbok</au><au>Cho, Kuk</au><au>Mun, Cheol</au><au>Ahn, Junho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Hybrid Fusion Algorithm with Vision Patterns for Generation of Precise Digital Road Maps in Self-driving Vehicles</atitle><jtitle>KSII transactions on Internet and information systems</jtitle><addtitle>KSII Transactions on Internet and Information Systems (TIIS)</addtitle><date>2020-10-30</date><risdate>2020</risdate><volume>14</volume><issue>10</issue><spage>3955</spage><epage>3971</epage><pages>3955-3971</pages><issn>1976-7277</issn><eissn>1976-7277</eissn><abstract>Due to the significant increase in the use of autonomous car technology, it is essential to integrate this technology with high-precision digital map data containing more precise and accurate roadway information, as compared to existing conventional map resources, to ensure the safety of self-driving operations. While existing map technologies may assist vehicles in identifying their locations via Global Positioning System, it is however difficult to update the environmental changes of roadways in these maps. Roadway vision algorithms can be useful for building autonomous vehicles that can avoid accidents and detect real-time location changes. We incorporate a hybrid architectural design that combines unsupervised classification of vision data with supervised joint fusion classification to achieve a better noise-resistant algorithm. We identify, via a deep learning approach, an intelligent hybrid fusion algorithm for fusing multimodal vision feature data for roadway classifications and characterize its improvement in accuracy over unsupervised identifications using image processing and supervised vision classifiers. We analyzed over 93,000 vision frame data collected from a test vehicle in real roadways. The performance indicators of the proposed hybrid fusion algorithm are successfully evaluated for the generation of roadway digital maps for autonomous vehicles, with a recall of 0.94, precision of 0.96, and accuracy of 0.92.</abstract><pub>한국인터넷정보학회</pub><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1976-7277
ispartof KSII transactions on Internet and information systems, 2020-10, Vol.14 (10), p.3955-3971
issn 1976-7277
1976-7277
language kor
recordid cdi_kisti_ndsl_JAKO202032265179330
source EZB-FREE-00999 freely available EZB journals
subjects Deep learning
High precision digital map
Intelligence
Self-driving vehicles
Vision
title Intelligent Hybrid Fusion Algorithm with Vision Patterns for Generation of Precise Digital Road Maps in Self-driving Vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A27%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kiss_kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Hybrid%20Fusion%20Algorithm%20with%20Vision%20Patterns%20for%20Generation%20of%20Precise%20Digital%20Road%20Maps%20in%20Self-driving%20Vehicles&rft.jtitle=KSII%20transactions%20on%20Internet%20and%20information%20systems&rft.au=Jung,%20Juho&rft.date=2020-10-30&rft.volume=14&rft.issue=10&rft.spage=3955&rft.epage=3971&rft.pages=3955-3971&rft.issn=1976-7277&rft.eissn=1976-7277&rft_id=info:doi/&rft_dat=%3Ckiss_kisti%3E3834274%3C/kiss_kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_kiss_id=3834274&rfr_iscdi=true