A Smart Framework for Mobile Botnet Detection Using Static Analysis
Botnets have become one of the most significant threats to Internet-connected smartphones. A botnet is a combination of infected devices communicating through a command server under the control of botmaster for malicious purposes. Nowadays, the number and variety of botnets attacks have increased dr...
Gespeichert in:
Veröffentlicht in: | KSII transactions on Internet and information systems 2020-06, Vol.14 (6), p.2591-2611 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2611 |
---|---|
container_issue | 6 |
container_start_page | 2591 |
container_title | KSII transactions on Internet and information systems |
container_volume | 14 |
creator | Anwar, Shahid Zolkipli, Mohamad Fadli Mezhuyev, Vitaliy Inayat, Zakira |
description | Botnets have become one of the most significant threats to Internet-connected smartphones. A botnet is a combination of infected devices communicating through a command server under the control of botmaster for malicious purposes. Nowadays, the number and variety of botnets attacks have increased drastically, especially on the Android platform. Severe network disruptions through massive coordinated attacks result in large financial and ethical losses. The increase in the number of botnet attacks brings the challenges for detection of harmful software. This study proposes a smart framework for mobile botnet detection using static analysis. This technique combines permissions, activities, broadcast receivers, background services, API and uses the machine-learning algorithm to detect mobile botnets applications. The prototype was implemented and used to validate the performance, accuracy, and scalability of the proposed framework by evaluating 3000 android applications. The obtained results show the proposed framework obtained 98.20% accuracy with a low 0.1140 false-positive rate. |
format | Article |
fullrecord | <record><control><sourceid>kiss_kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO202022762159644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><kiss_id>3801905</kiss_id><sourcerecordid>3801905</sourcerecordid><originalsourceid>FETCH-LOGICAL-k504-3b0b34d0ffbb80e9f364f9568e490227df51081e26a060611911120e35433c163</originalsourceid><addsrcrecordid>eNpNj81KxDAYRYMoOIzzBG6ycVn4vvw1Wdbq-DcyixnXJWkTCe200gRk3t4RRVzduzjnwj0jCzSlKkpWluf_-iVZpRQdINNMCa0XpK7o7mDnTNezPfjPae5pmGb6Ork4eHo75dFneuezb3OcRvqW4vhOd9nm2NJqtMMxxXRFLoIdkl_95pLs1_f7-rHYbB-e6mpT9BJEwR04LjoIwTkN3gSuRDBSaS8MMFZ2QSJo9ExZUKAQDSIy8FwKzltUfElufmb7mHJsxi4NzXP1smXAvn3FUBolxIm7_uNS8zHH079jwzWgAcm_AKaGTY8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Smart Framework for Mobile Botnet Detection Using Static Analysis</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Anwar, Shahid ; Zolkipli, Mohamad Fadli ; Mezhuyev, Vitaliy ; Inayat, Zakira</creator><creatorcontrib>Anwar, Shahid ; Zolkipli, Mohamad Fadli ; Mezhuyev, Vitaliy ; Inayat, Zakira</creatorcontrib><description>Botnets have become one of the most significant threats to Internet-connected smartphones. A botnet is a combination of infected devices communicating through a command server under the control of botmaster for malicious purposes. Nowadays, the number and variety of botnets attacks have increased drastically, especially on the Android platform. Severe network disruptions through massive coordinated attacks result in large financial and ethical losses. The increase in the number of botnet attacks brings the challenges for detection of harmful software. This study proposes a smart framework for mobile botnet detection using static analysis. This technique combines permissions, activities, broadcast receivers, background services, API and uses the machine-learning algorithm to detect mobile botnets applications. The prototype was implemented and used to validate the performance, accuracy, and scalability of the proposed framework by evaluating 3000 android applications. The obtained results show the proposed framework obtained 98.20% accuracy with a low 0.1140 false-positive rate.</description><identifier>ISSN: 1976-7277</identifier><identifier>EISSN: 1976-7277</identifier><language>kor</language><publisher>한국인터넷정보학회</publisher><subject>Android Botnets ; Botnet Detection Technique ; Smart Framework ; Static Analysis</subject><ispartof>KSII transactions on Internet and information systems, 2020-06, Vol.14 (6), p.2591-2611</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids></links><search><creatorcontrib>Anwar, Shahid</creatorcontrib><creatorcontrib>Zolkipli, Mohamad Fadli</creatorcontrib><creatorcontrib>Mezhuyev, Vitaliy</creatorcontrib><creatorcontrib>Inayat, Zakira</creatorcontrib><title>A Smart Framework for Mobile Botnet Detection Using Static Analysis</title><title>KSII transactions on Internet and information systems</title><addtitle>KSII Transactions on Internet and Information Systems (TIIS)</addtitle><description>Botnets have become one of the most significant threats to Internet-connected smartphones. A botnet is a combination of infected devices communicating through a command server under the control of botmaster for malicious purposes. Nowadays, the number and variety of botnets attacks have increased drastically, especially on the Android platform. Severe network disruptions through massive coordinated attacks result in large financial and ethical losses. The increase in the number of botnet attacks brings the challenges for detection of harmful software. This study proposes a smart framework for mobile botnet detection using static analysis. This technique combines permissions, activities, broadcast receivers, background services, API and uses the machine-learning algorithm to detect mobile botnets applications. The prototype was implemented and used to validate the performance, accuracy, and scalability of the proposed framework by evaluating 3000 android applications. The obtained results show the proposed framework obtained 98.20% accuracy with a low 0.1140 false-positive rate.</description><subject>Android Botnets</subject><subject>Botnet Detection Technique</subject><subject>Smart Framework</subject><subject>Static Analysis</subject><issn>1976-7277</issn><issn>1976-7277</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNpNj81KxDAYRYMoOIzzBG6ycVn4vvw1Wdbq-DcyixnXJWkTCe200gRk3t4RRVzduzjnwj0jCzSlKkpWluf_-iVZpRQdINNMCa0XpK7o7mDnTNezPfjPae5pmGb6Ork4eHo75dFneuezb3OcRvqW4vhOd9nm2NJqtMMxxXRFLoIdkl_95pLs1_f7-rHYbB-e6mpT9BJEwR04LjoIwTkN3gSuRDBSaS8MMFZ2QSJo9ExZUKAQDSIy8FwKzltUfElufmb7mHJsxi4NzXP1smXAvn3FUBolxIm7_uNS8zHH079jwzWgAcm_AKaGTY8</recordid><startdate>20200630</startdate><enddate>20200630</enddate><creator>Anwar, Shahid</creator><creator>Zolkipli, Mohamad Fadli</creator><creator>Mezhuyev, Vitaliy</creator><creator>Inayat, Zakira</creator><general>한국인터넷정보학회</general><scope>HZB</scope><scope>Q5X</scope><scope>JDI</scope></search><sort><creationdate>20200630</creationdate><title>A Smart Framework for Mobile Botnet Detection Using Static Analysis</title><author>Anwar, Shahid ; Zolkipli, Mohamad Fadli ; Mezhuyev, Vitaliy ; Inayat, Zakira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-k504-3b0b34d0ffbb80e9f364f9568e490227df51081e26a060611911120e35433c163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2020</creationdate><topic>Android Botnets</topic><topic>Botnet Detection Technique</topic><topic>Smart Framework</topic><topic>Static Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anwar, Shahid</creatorcontrib><creatorcontrib>Zolkipli, Mohamad Fadli</creatorcontrib><creatorcontrib>Mezhuyev, Vitaliy</creatorcontrib><creatorcontrib>Inayat, Zakira</creatorcontrib><collection>Korean Studies Information Service System (KISS)</collection><collection>Korean Studies Information Service System (KISS) B-Type</collection><collection>KoreaScience</collection><jtitle>KSII transactions on Internet and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anwar, Shahid</au><au>Zolkipli, Mohamad Fadli</au><au>Mezhuyev, Vitaliy</au><au>Inayat, Zakira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Smart Framework for Mobile Botnet Detection Using Static Analysis</atitle><jtitle>KSII transactions on Internet and information systems</jtitle><addtitle>KSII Transactions on Internet and Information Systems (TIIS)</addtitle><date>2020-06-30</date><risdate>2020</risdate><volume>14</volume><issue>6</issue><spage>2591</spage><epage>2611</epage><pages>2591-2611</pages><issn>1976-7277</issn><eissn>1976-7277</eissn><abstract>Botnets have become one of the most significant threats to Internet-connected smartphones. A botnet is a combination of infected devices communicating through a command server under the control of botmaster for malicious purposes. Nowadays, the number and variety of botnets attacks have increased drastically, especially on the Android platform. Severe network disruptions through massive coordinated attacks result in large financial and ethical losses. The increase in the number of botnet attacks brings the challenges for detection of harmful software. This study proposes a smart framework for mobile botnet detection using static analysis. This technique combines permissions, activities, broadcast receivers, background services, API and uses the machine-learning algorithm to detect mobile botnets applications. The prototype was implemented and used to validate the performance, accuracy, and scalability of the proposed framework by evaluating 3000 android applications. The obtained results show the proposed framework obtained 98.20% accuracy with a low 0.1140 false-positive rate.</abstract><pub>한국인터넷정보학회</pub><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1976-7277 |
ispartof | KSII transactions on Internet and information systems, 2020-06, Vol.14 (6), p.2591-2611 |
issn | 1976-7277 1976-7277 |
language | kor |
recordid | cdi_kisti_ndsl_JAKO202022762159644 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Android Botnets Botnet Detection Technique Smart Framework Static Analysis |
title | A Smart Framework for Mobile Botnet Detection Using Static Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A18%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kiss_kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Smart%20Framework%20for%20Mobile%20Botnet%20Detection%20Using%20Static%20Analysis&rft.jtitle=KSII%20transactions%20on%20Internet%20and%20information%20systems&rft.au=Anwar,%20Shahid&rft.date=2020-06-30&rft.volume=14&rft.issue=6&rft.spage=2591&rft.epage=2611&rft.pages=2591-2611&rft.issn=1976-7277&rft.eissn=1976-7277&rft_id=info:doi/&rft_dat=%3Ckiss_kisti%3E3801905%3C/kiss_kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_kiss_id=3801905&rfr_iscdi=true |