A Smart Framework for Mobile Botnet Detection Using Static Analysis

Botnets have become one of the most significant threats to Internet-connected smartphones. A botnet is a combination of infected devices communicating through a command server under the control of botmaster for malicious purposes. Nowadays, the number and variety of botnets attacks have increased dr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:KSII transactions on Internet and information systems 2020-06, Vol.14 (6), p.2591-2611
Hauptverfasser: Anwar, Shahid, Zolkipli, Mohamad Fadli, Mezhuyev, Vitaliy, Inayat, Zakira
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2611
container_issue 6
container_start_page 2591
container_title KSII transactions on Internet and information systems
container_volume 14
creator Anwar, Shahid
Zolkipli, Mohamad Fadli
Mezhuyev, Vitaliy
Inayat, Zakira
description Botnets have become one of the most significant threats to Internet-connected smartphones. A botnet is a combination of infected devices communicating through a command server under the control of botmaster for malicious purposes. Nowadays, the number and variety of botnets attacks have increased drastically, especially on the Android platform. Severe network disruptions through massive coordinated attacks result in large financial and ethical losses. The increase in the number of botnet attacks brings the challenges for detection of harmful software. This study proposes a smart framework for mobile botnet detection using static analysis. This technique combines permissions, activities, broadcast receivers, background services, API and uses the machine-learning algorithm to detect mobile botnets applications. The prototype was implemented and used to validate the performance, accuracy, and scalability of the proposed framework by evaluating 3000 android applications. The obtained results show the proposed framework obtained 98.20% accuracy with a low 0.1140 false-positive rate.
format Article
fullrecord <record><control><sourceid>kiss_kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO202022762159644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><kiss_id>3801905</kiss_id><sourcerecordid>3801905</sourcerecordid><originalsourceid>FETCH-LOGICAL-k504-3b0b34d0ffbb80e9f364f9568e490227df51081e26a060611911120e35433c163</originalsourceid><addsrcrecordid>eNpNj81KxDAYRYMoOIzzBG6ycVn4vvw1Wdbq-DcyixnXJWkTCe200gRk3t4RRVzduzjnwj0jCzSlKkpWluf_-iVZpRQdINNMCa0XpK7o7mDnTNezPfjPae5pmGb6Ork4eHo75dFneuezb3OcRvqW4vhOd9nm2NJqtMMxxXRFLoIdkl_95pLs1_f7-rHYbB-e6mpT9BJEwR04LjoIwTkN3gSuRDBSaS8MMFZ2QSJo9ExZUKAQDSIy8FwKzltUfElufmb7mHJsxi4NzXP1smXAvn3FUBolxIm7_uNS8zHH079jwzWgAcm_AKaGTY8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Smart Framework for Mobile Botnet Detection Using Static Analysis</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Anwar, Shahid ; Zolkipli, Mohamad Fadli ; Mezhuyev, Vitaliy ; Inayat, Zakira</creator><creatorcontrib>Anwar, Shahid ; Zolkipli, Mohamad Fadli ; Mezhuyev, Vitaliy ; Inayat, Zakira</creatorcontrib><description>Botnets have become one of the most significant threats to Internet-connected smartphones. A botnet is a combination of infected devices communicating through a command server under the control of botmaster for malicious purposes. Nowadays, the number and variety of botnets attacks have increased drastically, especially on the Android platform. Severe network disruptions through massive coordinated attacks result in large financial and ethical losses. The increase in the number of botnet attacks brings the challenges for detection of harmful software. This study proposes a smart framework for mobile botnet detection using static analysis. This technique combines permissions, activities, broadcast receivers, background services, API and uses the machine-learning algorithm to detect mobile botnets applications. The prototype was implemented and used to validate the performance, accuracy, and scalability of the proposed framework by evaluating 3000 android applications. The obtained results show the proposed framework obtained 98.20% accuracy with a low 0.1140 false-positive rate.</description><identifier>ISSN: 1976-7277</identifier><identifier>EISSN: 1976-7277</identifier><language>kor</language><publisher>한국인터넷정보학회</publisher><subject>Android Botnets ; Botnet Detection Technique ; Smart Framework ; Static Analysis</subject><ispartof>KSII transactions on Internet and information systems, 2020-06, Vol.14 (6), p.2591-2611</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids></links><search><creatorcontrib>Anwar, Shahid</creatorcontrib><creatorcontrib>Zolkipli, Mohamad Fadli</creatorcontrib><creatorcontrib>Mezhuyev, Vitaliy</creatorcontrib><creatorcontrib>Inayat, Zakira</creatorcontrib><title>A Smart Framework for Mobile Botnet Detection Using Static Analysis</title><title>KSII transactions on Internet and information systems</title><addtitle>KSII Transactions on Internet and Information Systems (TIIS)</addtitle><description>Botnets have become one of the most significant threats to Internet-connected smartphones. A botnet is a combination of infected devices communicating through a command server under the control of botmaster for malicious purposes. Nowadays, the number and variety of botnets attacks have increased drastically, especially on the Android platform. Severe network disruptions through massive coordinated attacks result in large financial and ethical losses. The increase in the number of botnet attacks brings the challenges for detection of harmful software. This study proposes a smart framework for mobile botnet detection using static analysis. This technique combines permissions, activities, broadcast receivers, background services, API and uses the machine-learning algorithm to detect mobile botnets applications. The prototype was implemented and used to validate the performance, accuracy, and scalability of the proposed framework by evaluating 3000 android applications. The obtained results show the proposed framework obtained 98.20% accuracy with a low 0.1140 false-positive rate.</description><subject>Android Botnets</subject><subject>Botnet Detection Technique</subject><subject>Smart Framework</subject><subject>Static Analysis</subject><issn>1976-7277</issn><issn>1976-7277</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNpNj81KxDAYRYMoOIzzBG6ycVn4vvw1Wdbq-DcyixnXJWkTCe200gRk3t4RRVzduzjnwj0jCzSlKkpWluf_-iVZpRQdINNMCa0XpK7o7mDnTNezPfjPae5pmGb6Ork4eHo75dFneuezb3OcRvqW4vhOd9nm2NJqtMMxxXRFLoIdkl_95pLs1_f7-rHYbB-e6mpT9BJEwR04LjoIwTkN3gSuRDBSaS8MMFZ2QSJo9ExZUKAQDSIy8FwKzltUfElufmb7mHJsxi4NzXP1smXAvn3FUBolxIm7_uNS8zHH079jwzWgAcm_AKaGTY8</recordid><startdate>20200630</startdate><enddate>20200630</enddate><creator>Anwar, Shahid</creator><creator>Zolkipli, Mohamad Fadli</creator><creator>Mezhuyev, Vitaliy</creator><creator>Inayat, Zakira</creator><general>한국인터넷정보학회</general><scope>HZB</scope><scope>Q5X</scope><scope>JDI</scope></search><sort><creationdate>20200630</creationdate><title>A Smart Framework for Mobile Botnet Detection Using Static Analysis</title><author>Anwar, Shahid ; Zolkipli, Mohamad Fadli ; Mezhuyev, Vitaliy ; Inayat, Zakira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-k504-3b0b34d0ffbb80e9f364f9568e490227df51081e26a060611911120e35433c163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2020</creationdate><topic>Android Botnets</topic><topic>Botnet Detection Technique</topic><topic>Smart Framework</topic><topic>Static Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anwar, Shahid</creatorcontrib><creatorcontrib>Zolkipli, Mohamad Fadli</creatorcontrib><creatorcontrib>Mezhuyev, Vitaliy</creatorcontrib><creatorcontrib>Inayat, Zakira</creatorcontrib><collection>Korean Studies Information Service System (KISS)</collection><collection>Korean Studies Information Service System (KISS) B-Type</collection><collection>KoreaScience</collection><jtitle>KSII transactions on Internet and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anwar, Shahid</au><au>Zolkipli, Mohamad Fadli</au><au>Mezhuyev, Vitaliy</au><au>Inayat, Zakira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Smart Framework for Mobile Botnet Detection Using Static Analysis</atitle><jtitle>KSII transactions on Internet and information systems</jtitle><addtitle>KSII Transactions on Internet and Information Systems (TIIS)</addtitle><date>2020-06-30</date><risdate>2020</risdate><volume>14</volume><issue>6</issue><spage>2591</spage><epage>2611</epage><pages>2591-2611</pages><issn>1976-7277</issn><eissn>1976-7277</eissn><abstract>Botnets have become one of the most significant threats to Internet-connected smartphones. A botnet is a combination of infected devices communicating through a command server under the control of botmaster for malicious purposes. Nowadays, the number and variety of botnets attacks have increased drastically, especially on the Android platform. Severe network disruptions through massive coordinated attacks result in large financial and ethical losses. The increase in the number of botnet attacks brings the challenges for detection of harmful software. This study proposes a smart framework for mobile botnet detection using static analysis. This technique combines permissions, activities, broadcast receivers, background services, API and uses the machine-learning algorithm to detect mobile botnets applications. The prototype was implemented and used to validate the performance, accuracy, and scalability of the proposed framework by evaluating 3000 android applications. The obtained results show the proposed framework obtained 98.20% accuracy with a low 0.1140 false-positive rate.</abstract><pub>한국인터넷정보학회</pub><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1976-7277
ispartof KSII transactions on Internet and information systems, 2020-06, Vol.14 (6), p.2591-2611
issn 1976-7277
1976-7277
language kor
recordid cdi_kisti_ndsl_JAKO202022762159644
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Android Botnets
Botnet Detection Technique
Smart Framework
Static Analysis
title A Smart Framework for Mobile Botnet Detection Using Static Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A18%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kiss_kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Smart%20Framework%20for%20Mobile%20Botnet%20Detection%20Using%20Static%20Analysis&rft.jtitle=KSII%20transactions%20on%20Internet%20and%20information%20systems&rft.au=Anwar,%20Shahid&rft.date=2020-06-30&rft.volume=14&rft.issue=6&rft.spage=2591&rft.epage=2611&rft.pages=2591-2611&rft.issn=1976-7277&rft.eissn=1976-7277&rft_id=info:doi/&rft_dat=%3Ckiss_kisti%3E3801905%3C/kiss_kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_kiss_id=3801905&rfr_iscdi=true