SHECHTER SPECTRA AND RELATIVELY DEMICOMPACT LINEAR RELATIONS

In this paper, we denote by L the block matrix linear relation, acting on the Banach space X ⊕ Y, of the form ${\mathcal{L}}=\(\array{A&B\\C&D}\)$, where A, B, C and D are four linear relations with dense domains. We first try to determine the conditions under which a block matrix linear rel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications of the Korean Mathematical Society 2020, Vol.35 (2), p.499-516
Hauptverfasser: Ammar, Aymen, Fakhfakh, Slim, Jeribi, Aref
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 516
container_issue 2
container_start_page 499
container_title Communications of the Korean Mathematical Society
container_volume 35
creator Ammar, Aymen
Fakhfakh, Slim
Jeribi, Aref
description In this paper, we denote by L the block matrix linear relation, acting on the Banach space X ⊕ Y, of the form ${\mathcal{L}}=\(\array{A&B\\C&D}\)$, where A, B, C and D are four linear relations with dense domains. We first try to determine the conditions under which a block matrix linear relation becomes a demicompact block matrix linear relation (see Theorems 4.1 and 4.2). Second we study Shechter spectra using demicompact linear relations and relatively demicompact linear relations (see Theorem 5.1).
format Article
fullrecord <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO202013461499270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO202013461499270</sourcerecordid><originalsourceid>FETCH-kisti_ndsl_JAKO2020134614992703</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgChbtO2RxLNzcpK0Fl5BeabV_pEFwKooKxeIS3x-XPoDTGb6zYAGiVJEEVEsWCMQ4Emki1yz0fryDTDDdxwABO_QFmcKR5X1HxlnNdZNzS5V25YWqK8-pLk1bd9o4XpUNaTtr2_RbtnrdJv8M527Y7kjOFNF79N9x-Dz8NJz0uUVAEFIlQmUZpiD__X45cTGr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SHECHTER SPECTRA AND RELATIVELY DEMICOMPACT LINEAR RELATIONS</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ammar, Aymen ; Fakhfakh, Slim ; Jeribi, Aref</creator><creatorcontrib>Ammar, Aymen ; Fakhfakh, Slim ; Jeribi, Aref</creatorcontrib><description>In this paper, we denote by L the block matrix linear relation, acting on the Banach space X ⊕ Y, of the form ${\mathcal{L}}=\(\array{A&amp;B\\C&amp;D}\)$, where A, B, C and D are four linear relations with dense domains. We first try to determine the conditions under which a block matrix linear relation becomes a demicompact block matrix linear relation (see Theorems 4.1 and 4.2). Second we study Shechter spectra using demicompact linear relations and relatively demicompact linear relations (see Theorem 5.1).</description><identifier>ISSN: 1225-1763</identifier><identifier>EISSN: 2234-3024</identifier><language>kor</language><ispartof>Communications of the Korean Mathematical Society, 2020, Vol.35 (2), p.499-516</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010</link.rule.ids></links><search><creatorcontrib>Ammar, Aymen</creatorcontrib><creatorcontrib>Fakhfakh, Slim</creatorcontrib><creatorcontrib>Jeribi, Aref</creatorcontrib><title>SHECHTER SPECTRA AND RELATIVELY DEMICOMPACT LINEAR RELATIONS</title><title>Communications of the Korean Mathematical Society</title><addtitle>대한수학회논문집</addtitle><description>In this paper, we denote by L the block matrix linear relation, acting on the Banach space X ⊕ Y, of the form ${\mathcal{L}}=\(\array{A&amp;B\\C&amp;D}\)$, where A, B, C and D are four linear relations with dense domains. We first try to determine the conditions under which a block matrix linear relation becomes a demicompact block matrix linear relation (see Theorems 4.1 and 4.2). Second we study Shechter spectra using demicompact linear relations and relatively demicompact linear relations (see Theorem 5.1).</description><issn>1225-1763</issn><issn>2234-3024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNqNyr0KwjAUQOEgChbtO2RxLNzcpK0Fl5BeabV_pEFwKooKxeIS3x-XPoDTGb6zYAGiVJEEVEsWCMQ4Emki1yz0fryDTDDdxwABO_QFmcKR5X1HxlnNdZNzS5V25YWqK8-pLk1bd9o4XpUNaTtr2_RbtnrdJv8M527Y7kjOFNF79N9x-Dz8NJz0uUVAEFIlQmUZpiD__X45cTGr</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Ammar, Aymen</creator><creator>Fakhfakh, Slim</creator><creator>Jeribi, Aref</creator><scope>JDI</scope></search><sort><creationdate>2020</creationdate><title>SHECHTER SPECTRA AND RELATIVELY DEMICOMPACT LINEAR RELATIONS</title><author>Ammar, Aymen ; Fakhfakh, Slim ; Jeribi, Aref</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kisti_ndsl_JAKO2020134614992703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ammar, Aymen</creatorcontrib><creatorcontrib>Fakhfakh, Slim</creatorcontrib><creatorcontrib>Jeribi, Aref</creatorcontrib><collection>KoreaScience</collection><jtitle>Communications of the Korean Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ammar, Aymen</au><au>Fakhfakh, Slim</au><au>Jeribi, Aref</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SHECHTER SPECTRA AND RELATIVELY DEMICOMPACT LINEAR RELATIONS</atitle><jtitle>Communications of the Korean Mathematical Society</jtitle><addtitle>대한수학회논문집</addtitle><date>2020</date><risdate>2020</risdate><volume>35</volume><issue>2</issue><spage>499</spage><epage>516</epage><pages>499-516</pages><issn>1225-1763</issn><eissn>2234-3024</eissn><abstract>In this paper, we denote by L the block matrix linear relation, acting on the Banach space X ⊕ Y, of the form ${\mathcal{L}}=\(\array{A&amp;B\\C&amp;D}\)$, where A, B, C and D are four linear relations with dense domains. We first try to determine the conditions under which a block matrix linear relation becomes a demicompact block matrix linear relation (see Theorems 4.1 and 4.2). Second we study Shechter spectra using demicompact linear relations and relatively demicompact linear relations (see Theorem 5.1).</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1225-1763
ispartof Communications of the Korean Mathematical Society, 2020, Vol.35 (2), p.499-516
issn 1225-1763
2234-3024
language kor
recordid cdi_kisti_ndsl_JAKO202013461499270
source EZB-FREE-00999 freely available EZB journals
title SHECHTER SPECTRA AND RELATIVELY DEMICOMPACT LINEAR RELATIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A14%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SHECHTER%20SPECTRA%20AND%20RELATIVELY%20DEMICOMPACT%20LINEAR%20RELATIONS&rft.jtitle=Communications%20of%20the%20Korean%20Mathematical%20Society&rft.au=Ammar,%20Aymen&rft.date=2020&rft.volume=35&rft.issue=2&rft.spage=499&rft.epage=516&rft.pages=499-516&rft.issn=1225-1763&rft.eissn=2234-3024&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO202013461499270%3C/kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true