Deriving ratings from a private P2P collaborative scheme

Privacy-preserving collaborative filtering schemes take privacy concerns into its primary consideration without neglecting the prediction accuracy. Different schemes are proposed that are built upon different data partitioning scenarios such as a central server, two-, multi-party or peer-to-peer net...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:KSII transactions on Internet and information systems 2019-09, Vol.13 (9), p.4463-4483
Hauptverfasser: Okkalioglu, Murat, Kaleli, Cihan
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4483
container_issue 9
container_start_page 4463
container_title KSII transactions on Internet and information systems
container_volume 13
creator Okkalioglu, Murat
Kaleli, Cihan
description Privacy-preserving collaborative filtering schemes take privacy concerns into its primary consideration without neglecting the prediction accuracy. Different schemes are proposed that are built upon different data partitioning scenarios such as a central server, two-, multi-party or peer-to-peer network. These data partitioning scenarios have been investigated in terms of claimed privacy promises, recently. However, to the best of our knowledge, any peer-to-peer privacy-preserving scheme lacks such study that scrutinizes privacy promises. In this paper, we apply three different attack techniques by utilizing auxiliary information to derive private ratings of peers and conduct experiments by varying privacy protection parameters to evaluate to what extent peers’ data can be reconstructed.
format Article
fullrecord <record><control><sourceid>kiss_kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO201932365651112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><kiss_id>3703517</kiss_id><sourcerecordid>3703517</sourcerecordid><originalsourceid>FETCH-LOGICAL-k502-33288a51de5690c1e536b6e5d0b60de58d41661856c843c2ddbe70d680ae3f573</originalsourceid><addsrcrecordid>eNpNjk1rwzAQREVpoSHNL-hFlx4NWq21ko8h_UwDySF3I0vrxMSOi2UC_fd1aSk9zfB4DHMlZlBYyqy29vpfvxWLlJpKgXaacudmwj3y0Fya80EOfpwiyXroO-nlx4T9yHKndzL0beur_tu4sEzhyB3fiZvat4kXvzkX--en_eo122xf3lbLTXYySmeI2jlvILKhQgVgg1QRm6gqUhN0MQcicIaCyzHoGCu2KpJTnrE2Fufi4Wf21KSxKc8xteV6-b7VCgrUSIYMAOjJu__zUjmd7_zwWaJVaMDiFzRbSuU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deriving ratings from a private P2P collaborative scheme</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Okkalioglu, Murat ; Kaleli, Cihan</creator><creatorcontrib>Okkalioglu, Murat ; Kaleli, Cihan</creatorcontrib><description>Privacy-preserving collaborative filtering schemes take privacy concerns into its primary consideration without neglecting the prediction accuracy. Different schemes are proposed that are built upon different data partitioning scenarios such as a central server, two-, multi-party or peer-to-peer network. These data partitioning scenarios have been investigated in terms of claimed privacy promises, recently. However, to the best of our knowledge, any peer-to-peer privacy-preserving scheme lacks such study that scrutinizes privacy promises. In this paper, we apply three different attack techniques by utilizing auxiliary information to derive private ratings of peers and conduct experiments by varying privacy protection parameters to evaluate to what extent peers’ data can be reconstructed.</description><identifier>ISSN: 1976-7277</identifier><identifier>EISSN: 1976-7277</identifier><language>kor</language><publisher>한국인터넷정보학회</publisher><subject>auxiliary information ; collaborative filtering ; data reconstruction ; peer-to-peer ; Privacy</subject><ispartof>KSII transactions on Internet and information systems, 2019-09, Vol.13 (9), p.4463-4483</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids></links><search><creatorcontrib>Okkalioglu, Murat</creatorcontrib><creatorcontrib>Kaleli, Cihan</creatorcontrib><title>Deriving ratings from a private P2P collaborative scheme</title><title>KSII transactions on Internet and information systems</title><addtitle>KSII Transactions on Internet and Information Systems (TIIS)</addtitle><description>Privacy-preserving collaborative filtering schemes take privacy concerns into its primary consideration without neglecting the prediction accuracy. Different schemes are proposed that are built upon different data partitioning scenarios such as a central server, two-, multi-party or peer-to-peer network. These data partitioning scenarios have been investigated in terms of claimed privacy promises, recently. However, to the best of our knowledge, any peer-to-peer privacy-preserving scheme lacks such study that scrutinizes privacy promises. In this paper, we apply three different attack techniques by utilizing auxiliary information to derive private ratings of peers and conduct experiments by varying privacy protection parameters to evaluate to what extent peers’ data can be reconstructed.</description><subject>auxiliary information</subject><subject>collaborative filtering</subject><subject>data reconstruction</subject><subject>peer-to-peer</subject><subject>Privacy</subject><issn>1976-7277</issn><issn>1976-7277</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNpNjk1rwzAQREVpoSHNL-hFlx4NWq21ko8h_UwDySF3I0vrxMSOi2UC_fd1aSk9zfB4DHMlZlBYyqy29vpfvxWLlJpKgXaacudmwj3y0Fya80EOfpwiyXroO-nlx4T9yHKndzL0beur_tu4sEzhyB3fiZvat4kXvzkX--en_eo122xf3lbLTXYySmeI2jlvILKhQgVgg1QRm6gqUhN0MQcicIaCyzHoGCu2KpJTnrE2Fufi4Wf21KSxKc8xteV6-b7VCgrUSIYMAOjJu__zUjmd7_zwWaJVaMDiFzRbSuU</recordid><startdate>20190930</startdate><enddate>20190930</enddate><creator>Okkalioglu, Murat</creator><creator>Kaleli, Cihan</creator><general>한국인터넷정보학회</general><scope>HZB</scope><scope>Q5X</scope><scope>JDI</scope></search><sort><creationdate>20190930</creationdate><title>Deriving ratings from a private P2P collaborative scheme</title><author>Okkalioglu, Murat ; Kaleli, Cihan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-k502-33288a51de5690c1e536b6e5d0b60de58d41661856c843c2ddbe70d680ae3f573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2019</creationdate><topic>auxiliary information</topic><topic>collaborative filtering</topic><topic>data reconstruction</topic><topic>peer-to-peer</topic><topic>Privacy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okkalioglu, Murat</creatorcontrib><creatorcontrib>Kaleli, Cihan</creatorcontrib><collection>Korean Studies Information Service System (KISS)</collection><collection>Korean Studies Information Service System (KISS) B-Type</collection><collection>KoreaScience</collection><jtitle>KSII transactions on Internet and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okkalioglu, Murat</au><au>Kaleli, Cihan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deriving ratings from a private P2P collaborative scheme</atitle><jtitle>KSII transactions on Internet and information systems</jtitle><addtitle>KSII Transactions on Internet and Information Systems (TIIS)</addtitle><date>2019-09-30</date><risdate>2019</risdate><volume>13</volume><issue>9</issue><spage>4463</spage><epage>4483</epage><pages>4463-4483</pages><issn>1976-7277</issn><eissn>1976-7277</eissn><abstract>Privacy-preserving collaborative filtering schemes take privacy concerns into its primary consideration without neglecting the prediction accuracy. Different schemes are proposed that are built upon different data partitioning scenarios such as a central server, two-, multi-party or peer-to-peer network. These data partitioning scenarios have been investigated in terms of claimed privacy promises, recently. However, to the best of our knowledge, any peer-to-peer privacy-preserving scheme lacks such study that scrutinizes privacy promises. In this paper, we apply three different attack techniques by utilizing auxiliary information to derive private ratings of peers and conduct experiments by varying privacy protection parameters to evaluate to what extent peers’ data can be reconstructed.</abstract><pub>한국인터넷정보학회</pub><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1976-7277
ispartof KSII transactions on Internet and information systems, 2019-09, Vol.13 (9), p.4463-4483
issn 1976-7277
1976-7277
language kor
recordid cdi_kisti_ndsl_JAKO201932365651112
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects auxiliary information
collaborative filtering
data reconstruction
peer-to-peer
Privacy
title Deriving ratings from a private P2P collaborative scheme
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T02%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kiss_kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deriving%20ratings%20from%20a%20private%20P2P%20collaborative%20scheme&rft.jtitle=KSII%20transactions%20on%20Internet%20and%20information%20systems&rft.au=Okkalioglu,%20Murat&rft.date=2019-09-30&rft.volume=13&rft.issue=9&rft.spage=4463&rft.epage=4483&rft.pages=4463-4483&rft.issn=1976-7277&rft.eissn=1976-7277&rft_id=info:doi/&rft_dat=%3Ckiss_kisti%3E3703517%3C/kiss_kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_kiss_id=3703517&rfr_iscdi=true