BOUNDS FOR EXPONENTIAL MOMENTS OF BESSEL PROCESSES
Let $0
Gespeichert in:
Veröffentlicht in: | Taehan Suhakhoe hoebo 2019, Vol.56 (5), p.1211-1217 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1217 |
---|---|
container_issue | 5 |
container_start_page | 1211 |
container_title | Taehan Suhakhoe hoebo |
container_volume | 56 |
creator | Makasu, Cloud |
description | Let $0 |
format | Article |
fullrecord | <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO201928463078688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO201928463078688</sourcerecordid><originalsourceid>FETCH-kisti_ndsl_JAKO2019284630786883</originalsourceid><addsrcrecordid>eNpjYeA0NDA01bUwMzbhYOAqLs4yMDAxNbI042QwcvIP9XMJVnDzD1JwjQjw93P1C_F09FHw9fcFsoIV_N0UnFyDg119FAKC_J1BrGAeBta0xJziVF4ozc2g6uYa4uyhm51ZXJIZn5dSnBPv5ejtb2RgaGlkYWJmbGBuYWZhYUysOgCM0yyR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>BOUNDS FOR EXPONENTIAL MOMENTS OF BESSEL PROCESSES</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Makasu, Cloud</creator><creatorcontrib>Makasu, Cloud</creatorcontrib><description>Let $0<{\alpha}<{\infty}$ be fixed, and let $X=(X_t)_{t{\geq}0}$ be a Bessel process with dimension $0<{\theta}{\leq}1$ starting at $x{\geq}0$. In this paper, it is proved that there are positive constants A and D depending only on ${\theta}$ and ${\alpha}$ such that $$E_x\({\exp}[{\alpha}\;\max_{0{\leq}t{\leq}{\tau}}\;X_t]\){\leq}AE_x\({\exp}[D_{\tau}]\)$$ for any stopping time ${\tau}$ of X. This inequality is also shown to be sharp.</description><identifier>ISSN: 1015-8634</identifier><language>kor</language><ispartof>Taehan Suhakhoe hoebo, 2019, Vol.56 (5), p.1211-1217</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010</link.rule.ids></links><search><creatorcontrib>Makasu, Cloud</creatorcontrib><title>BOUNDS FOR EXPONENTIAL MOMENTS OF BESSEL PROCESSES</title><title>Taehan Suhakhoe hoebo</title><addtitle>대한수학회보</addtitle><description>Let $0<{\alpha}<{\infty}$ be fixed, and let $X=(X_t)_{t{\geq}0}$ be a Bessel process with dimension $0<{\theta}{\leq}1$ starting at $x{\geq}0$. In this paper, it is proved that there are positive constants A and D depending only on ${\theta}$ and ${\alpha}$ such that $$E_x\({\exp}[{\alpha}\;\max_{0{\leq}t{\leq}{\tau}}\;X_t]\){\leq}AE_x\({\exp}[D_{\tau}]\)$$ for any stopping time ${\tau}$ of X. This inequality is also shown to be sharp.</description><issn>1015-8634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNpjYeA0NDA01bUwMzbhYOAqLs4yMDAxNbI042QwcvIP9XMJVnDzD1JwjQjw93P1C_F09FHw9fcFsoIV_N0UnFyDg119FAKC_J1BrGAeBta0xJziVF4ozc2g6uYa4uyhm51ZXJIZn5dSnBPv5ejtb2RgaGlkYWJmbGBuYWZhYUysOgCM0yyR</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Makasu, Cloud</creator><scope>JDI</scope></search><sort><creationdate>2019</creationdate><title>BOUNDS FOR EXPONENTIAL MOMENTS OF BESSEL PROCESSES</title><author>Makasu, Cloud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kisti_ndsl_JAKO2019284630786883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makasu, Cloud</creatorcontrib><collection>KoreaScience</collection><jtitle>Taehan Suhakhoe hoebo</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makasu, Cloud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BOUNDS FOR EXPONENTIAL MOMENTS OF BESSEL PROCESSES</atitle><jtitle>Taehan Suhakhoe hoebo</jtitle><addtitle>대한수학회보</addtitle><date>2019</date><risdate>2019</risdate><volume>56</volume><issue>5</issue><spage>1211</spage><epage>1217</epage><pages>1211-1217</pages><issn>1015-8634</issn><abstract>Let $0<{\alpha}<{\infty}$ be fixed, and let $X=(X_t)_{t{\geq}0}$ be a Bessel process with dimension $0<{\theta}{\leq}1$ starting at $x{\geq}0$. In this paper, it is proved that there are positive constants A and D depending only on ${\theta}$ and ${\alpha}$ such that $$E_x\({\exp}[{\alpha}\;\max_{0{\leq}t{\leq}{\tau}}\;X_t]\){\leq}AE_x\({\exp}[D_{\tau}]\)$$ for any stopping time ${\tau}$ of X. This inequality is also shown to be sharp.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1015-8634 |
ispartof | Taehan Suhakhoe hoebo, 2019, Vol.56 (5), p.1211-1217 |
issn | 1015-8634 |
language | kor |
recordid | cdi_kisti_ndsl_JAKO201928463078688 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | BOUNDS FOR EXPONENTIAL MOMENTS OF BESSEL PROCESSES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A15%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BOUNDS%20FOR%20EXPONENTIAL%20MOMENTS%20OF%20BESSEL%20PROCESSES&rft.jtitle=Taehan%20Suhakhoe%20hoebo&rft.au=Makasu,%20Cloud&rft.date=2019&rft.volume=56&rft.issue=5&rft.spage=1211&rft.epage=1217&rft.pages=1211-1217&rft.issn=1015-8634&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO201928463078688%3C/kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |