Face Sketch Synthesis Based on Local and Nonlocal Similarity Regularization

Face sketch synthesis plays an important role in public security and digital entertainment. In this paper, we present a novel face sketch synthesis method via local similarity and nonlocal similarity regularization terms. The local similarity can overcome the technological bottlenecks of the patch r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JIPS(Journal of Information Processing Systems) 2019-12, Vol.15 (6), p.1449-1461
Hauptverfasser: Tang, Songze, Zhou, Xuhuan, Zhou, Nan, Sun, Le, Wang, Jin
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1461
container_issue 6
container_start_page 1449
container_title JIPS(Journal of Information Processing Systems)
container_volume 15
creator Tang, Songze
Zhou, Xuhuan
Zhou, Nan
Sun, Le
Wang, Jin
description Face sketch synthesis plays an important role in public security and digital entertainment. In this paper, we present a novel face sketch synthesis method via local similarity and nonlocal similarity regularization terms. The local similarity can overcome the technological bottlenecks of the patch representation scheme in traditional learning-based methods. It improves the quality of synthesized sketches by penalizing the dissimilar training patches (thus have very small weights or are discarded). In addition, taking the redundancy of image patches into account, a global nonlocal similarity regularization is employed to restrain the generation of the noise and maintain primitive facial features during the synthesized process. More robust synthesized results can be obtained. Extensive experiments on the public databases validate the generality, effectiveness, and robustness of the proposed algorithm.
format Article
fullrecord <record><control><sourceid>kiss_kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO201914655594060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><kiss_id>3738837</kiss_id><sourcerecordid>3738837</sourcerecordid><originalsourceid>FETCH-LOGICAL-k500-baae670fc6de732f1b4a03fd23e9c08d6c7f55168f6dcda97b934031a810c9183</originalsourceid><addsrcrecordid>eNo9jMtOwzAURC0EElHpF7DxhmWk6zh-LUtFgTaiEumiu-jGdqiVNEF1WISvpzzEZmaOdDQXJMnAZKkGsb8kCTNKpobx_TWZxxhqACWEzJhIyGaF1tOy9aM90HLqx4OPIdJ7jN7RoafFYLGj2Dv6MvTdD5ThGDo8hXGir_7t43t-4hiG_oZcNdhFP__rGdmtHnbLp7TYPj4vF0XaCoC0RvRSQWOl84pnDatzBN64jHtjQTtpVSMEk7qRzjo0qjY8B85QM7CGaT4jd7-3bYhjqHoXu2q92GwzYIblUghhcpBw9m7_vVi9n8IRT1PFFdf6HF_ahFLk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Face Sketch Synthesis Based on Local and Nonlocal Similarity Regularization</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tang, Songze ; Zhou, Xuhuan ; Zhou, Nan ; Sun, Le ; Wang, Jin</creator><creatorcontrib>Tang, Songze ; Zhou, Xuhuan ; Zhou, Nan ; Sun, Le ; Wang, Jin</creatorcontrib><description>Face sketch synthesis plays an important role in public security and digital entertainment. In this paper, we present a novel face sketch synthesis method via local similarity and nonlocal similarity regularization terms. The local similarity can overcome the technological bottlenecks of the patch representation scheme in traditional learning-based methods. It improves the quality of synthesized sketches by penalizing the dissimilar training patches (thus have very small weights or are discarded). In addition, taking the redundancy of image patches into account, a global nonlocal similarity regularization is employed to restrain the generation of the noise and maintain primitive facial features during the synthesized process. More robust synthesized results can be obtained. Extensive experiments on the public databases validate the generality, effectiveness, and robustness of the proposed algorithm.</description><identifier>ISSN: 1976-913X</identifier><identifier>EISSN: 2092-805X</identifier><language>kor</language><publisher>한국정보처리학회</publisher><subject>Face Sketch Synthesis ; Local Similarity ; Nonlocal Similarity ; Patch Representation</subject><ispartof>JIPS(Journal of Information Processing Systems), 2019-12, Vol.15 (6), p.1449-1461</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids></links><search><creatorcontrib>Tang, Songze</creatorcontrib><creatorcontrib>Zhou, Xuhuan</creatorcontrib><creatorcontrib>Zhou, Nan</creatorcontrib><creatorcontrib>Sun, Le</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><title>Face Sketch Synthesis Based on Local and Nonlocal Similarity Regularization</title><title>JIPS(Journal of Information Processing Systems)</title><addtitle>JIPS(Journal of Information Processing Systems)</addtitle><description>Face sketch synthesis plays an important role in public security and digital entertainment. In this paper, we present a novel face sketch synthesis method via local similarity and nonlocal similarity regularization terms. The local similarity can overcome the technological bottlenecks of the patch representation scheme in traditional learning-based methods. It improves the quality of synthesized sketches by penalizing the dissimilar training patches (thus have very small weights or are discarded). In addition, taking the redundancy of image patches into account, a global nonlocal similarity regularization is employed to restrain the generation of the noise and maintain primitive facial features during the synthesized process. More robust synthesized results can be obtained. Extensive experiments on the public databases validate the generality, effectiveness, and robustness of the proposed algorithm.</description><subject>Face Sketch Synthesis</subject><subject>Local Similarity</subject><subject>Nonlocal Similarity</subject><subject>Patch Representation</subject><issn>1976-913X</issn><issn>2092-805X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNo9jMtOwzAURC0EElHpF7DxhmWk6zh-LUtFgTaiEumiu-jGdqiVNEF1WISvpzzEZmaOdDQXJMnAZKkGsb8kCTNKpobx_TWZxxhqACWEzJhIyGaF1tOy9aM90HLqx4OPIdJ7jN7RoafFYLGj2Dv6MvTdD5ThGDo8hXGir_7t43t-4hiG_oZcNdhFP__rGdmtHnbLp7TYPj4vF0XaCoC0RvRSQWOl84pnDatzBN64jHtjQTtpVSMEk7qRzjo0qjY8B85QM7CGaT4jd7-3bYhjqHoXu2q92GwzYIblUghhcpBw9m7_vVi9n8IRT1PFFdf6HF_ahFLk</recordid><startdate>20191231</startdate><enddate>20191231</enddate><creator>Tang, Songze</creator><creator>Zhou, Xuhuan</creator><creator>Zhou, Nan</creator><creator>Sun, Le</creator><creator>Wang, Jin</creator><general>한국정보처리학회</general><scope>HZB</scope><scope>Q5X</scope><scope>JDI</scope></search><sort><creationdate>20191231</creationdate><title>Face Sketch Synthesis Based on Local and Nonlocal Similarity Regularization</title><author>Tang, Songze ; Zhou, Xuhuan ; Zhou, Nan ; Sun, Le ; Wang, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-k500-baae670fc6de732f1b4a03fd23e9c08d6c7f55168f6dcda97b934031a810c9183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2019</creationdate><topic>Face Sketch Synthesis</topic><topic>Local Similarity</topic><topic>Nonlocal Similarity</topic><topic>Patch Representation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Songze</creatorcontrib><creatorcontrib>Zhou, Xuhuan</creatorcontrib><creatorcontrib>Zhou, Nan</creatorcontrib><creatorcontrib>Sun, Le</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><collection>Korean Studies Information Service System (KISS)</collection><collection>Korean Studies Information Service System (KISS) B-Type</collection><collection>KoreaScience</collection><jtitle>JIPS(Journal of Information Processing Systems)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Songze</au><au>Zhou, Xuhuan</au><au>Zhou, Nan</au><au>Sun, Le</au><au>Wang, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Face Sketch Synthesis Based on Local and Nonlocal Similarity Regularization</atitle><jtitle>JIPS(Journal of Information Processing Systems)</jtitle><addtitle>JIPS(Journal of Information Processing Systems)</addtitle><date>2019-12-31</date><risdate>2019</risdate><volume>15</volume><issue>6</issue><spage>1449</spage><epage>1461</epage><pages>1449-1461</pages><issn>1976-913X</issn><eissn>2092-805X</eissn><abstract>Face sketch synthesis plays an important role in public security and digital entertainment. In this paper, we present a novel face sketch synthesis method via local similarity and nonlocal similarity regularization terms. The local similarity can overcome the technological bottlenecks of the patch representation scheme in traditional learning-based methods. It improves the quality of synthesized sketches by penalizing the dissimilar training patches (thus have very small weights or are discarded). In addition, taking the redundancy of image patches into account, a global nonlocal similarity regularization is employed to restrain the generation of the noise and maintain primitive facial features during the synthesized process. More robust synthesized results can be obtained. Extensive experiments on the public databases validate the generality, effectiveness, and robustness of the proposed algorithm.</abstract><pub>한국정보처리학회</pub><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1976-913X
ispartof JIPS(Journal of Information Processing Systems), 2019-12, Vol.15 (6), p.1449-1461
issn 1976-913X
2092-805X
language kor
recordid cdi_kisti_ndsl_JAKO201914655594060
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Face Sketch Synthesis
Local Similarity
Nonlocal Similarity
Patch Representation
title Face Sketch Synthesis Based on Local and Nonlocal Similarity Regularization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A12%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kiss_kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Face%20Sketch%20Synthesis%20Based%20on%20Local%20and%20Nonlocal%20Similarity%20Regularization&rft.jtitle=JIPS(Journal%20of%20Information%20Processing%20Systems)&rft.au=Tang,%20Songze&rft.date=2019-12-31&rft.volume=15&rft.issue=6&rft.spage=1449&rft.epage=1461&rft.pages=1449-1461&rft.issn=1976-913X&rft.eissn=2092-805X&rft_id=info:doi/&rft_dat=%3Ckiss_kisti%3E3738837%3C/kiss_kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_kiss_id=3738837&rfr_iscdi=true