Face Sketch Synthesis Based on Local and Nonlocal Similarity Regularization
Face sketch synthesis plays an important role in public security and digital entertainment. In this paper, we present a novel face sketch synthesis method via local similarity and nonlocal similarity regularization terms. The local similarity can overcome the technological bottlenecks of the patch r...
Gespeichert in:
Veröffentlicht in: | JIPS(Journal of Information Processing Systems) 2019-12, Vol.15 (6), p.1449-1461 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1461 |
---|---|
container_issue | 6 |
container_start_page | 1449 |
container_title | JIPS(Journal of Information Processing Systems) |
container_volume | 15 |
creator | Tang, Songze Zhou, Xuhuan Zhou, Nan Sun, Le Wang, Jin |
description | Face sketch synthesis plays an important role in public security and digital entertainment. In this paper, we present a novel face sketch synthesis method via local similarity and nonlocal similarity regularization terms. The local similarity can overcome the technological bottlenecks of the patch representation scheme in traditional learning-based methods. It improves the quality of synthesized sketches by penalizing the dissimilar training patches (thus have very small weights or are discarded). In addition, taking the redundancy of image patches into account, a global nonlocal similarity regularization is employed to restrain the generation of the noise and maintain primitive facial features during the synthesized process. More robust synthesized results can be obtained. Extensive experiments on the public databases validate the generality, effectiveness, and robustness of the proposed algorithm. |
format | Article |
fullrecord | <record><control><sourceid>kiss_kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO201914655594060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><kiss_id>3738837</kiss_id><sourcerecordid>3738837</sourcerecordid><originalsourceid>FETCH-LOGICAL-k500-baae670fc6de732f1b4a03fd23e9c08d6c7f55168f6dcda97b934031a810c9183</originalsourceid><addsrcrecordid>eNo9jMtOwzAURC0EElHpF7DxhmWk6zh-LUtFgTaiEumiu-jGdqiVNEF1WISvpzzEZmaOdDQXJMnAZKkGsb8kCTNKpobx_TWZxxhqACWEzJhIyGaF1tOy9aM90HLqx4OPIdJ7jN7RoafFYLGj2Dv6MvTdD5ThGDo8hXGir_7t43t-4hiG_oZcNdhFP__rGdmtHnbLp7TYPj4vF0XaCoC0RvRSQWOl84pnDatzBN64jHtjQTtpVSMEk7qRzjo0qjY8B85QM7CGaT4jd7-3bYhjqHoXu2q92GwzYIblUghhcpBw9m7_vVi9n8IRT1PFFdf6HF_ahFLk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Face Sketch Synthesis Based on Local and Nonlocal Similarity Regularization</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tang, Songze ; Zhou, Xuhuan ; Zhou, Nan ; Sun, Le ; Wang, Jin</creator><creatorcontrib>Tang, Songze ; Zhou, Xuhuan ; Zhou, Nan ; Sun, Le ; Wang, Jin</creatorcontrib><description>Face sketch synthesis plays an important role in public security and digital entertainment. In this paper, we present a novel face sketch synthesis method via local similarity and nonlocal similarity regularization terms. The local similarity can overcome the technological bottlenecks of the patch representation scheme in traditional learning-based methods. It improves the quality of synthesized sketches by penalizing the dissimilar training patches (thus have very small weights or are discarded). In addition, taking the redundancy of image patches into account, a global nonlocal similarity regularization is employed to restrain the generation of the noise and maintain primitive facial features during the synthesized process. More robust synthesized results can be obtained. Extensive experiments on the public databases validate the generality, effectiveness, and robustness of the proposed algorithm.</description><identifier>ISSN: 1976-913X</identifier><identifier>EISSN: 2092-805X</identifier><language>kor</language><publisher>한국정보처리학회</publisher><subject>Face Sketch Synthesis ; Local Similarity ; Nonlocal Similarity ; Patch Representation</subject><ispartof>JIPS(Journal of Information Processing Systems), 2019-12, Vol.15 (6), p.1449-1461</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids></links><search><creatorcontrib>Tang, Songze</creatorcontrib><creatorcontrib>Zhou, Xuhuan</creatorcontrib><creatorcontrib>Zhou, Nan</creatorcontrib><creatorcontrib>Sun, Le</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><title>Face Sketch Synthesis Based on Local and Nonlocal Similarity Regularization</title><title>JIPS(Journal of Information Processing Systems)</title><addtitle>JIPS(Journal of Information Processing Systems)</addtitle><description>Face sketch synthesis plays an important role in public security and digital entertainment. In this paper, we present a novel face sketch synthesis method via local similarity and nonlocal similarity regularization terms. The local similarity can overcome the technological bottlenecks of the patch representation scheme in traditional learning-based methods. It improves the quality of synthesized sketches by penalizing the dissimilar training patches (thus have very small weights or are discarded). In addition, taking the redundancy of image patches into account, a global nonlocal similarity regularization is employed to restrain the generation of the noise and maintain primitive facial features during the synthesized process. More robust synthesized results can be obtained. Extensive experiments on the public databases validate the generality, effectiveness, and robustness of the proposed algorithm.</description><subject>Face Sketch Synthesis</subject><subject>Local Similarity</subject><subject>Nonlocal Similarity</subject><subject>Patch Representation</subject><issn>1976-913X</issn><issn>2092-805X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNo9jMtOwzAURC0EElHpF7DxhmWk6zh-LUtFgTaiEumiu-jGdqiVNEF1WISvpzzEZmaOdDQXJMnAZKkGsb8kCTNKpobx_TWZxxhqACWEzJhIyGaF1tOy9aM90HLqx4OPIdJ7jN7RoafFYLGj2Dv6MvTdD5ThGDo8hXGir_7t43t-4hiG_oZcNdhFP__rGdmtHnbLp7TYPj4vF0XaCoC0RvRSQWOl84pnDatzBN64jHtjQTtpVSMEk7qRzjo0qjY8B85QM7CGaT4jd7-3bYhjqHoXu2q92GwzYIblUghhcpBw9m7_vVi9n8IRT1PFFdf6HF_ahFLk</recordid><startdate>20191231</startdate><enddate>20191231</enddate><creator>Tang, Songze</creator><creator>Zhou, Xuhuan</creator><creator>Zhou, Nan</creator><creator>Sun, Le</creator><creator>Wang, Jin</creator><general>한국정보처리학회</general><scope>HZB</scope><scope>Q5X</scope><scope>JDI</scope></search><sort><creationdate>20191231</creationdate><title>Face Sketch Synthesis Based on Local and Nonlocal Similarity Regularization</title><author>Tang, Songze ; Zhou, Xuhuan ; Zhou, Nan ; Sun, Le ; Wang, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-k500-baae670fc6de732f1b4a03fd23e9c08d6c7f55168f6dcda97b934031a810c9183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2019</creationdate><topic>Face Sketch Synthesis</topic><topic>Local Similarity</topic><topic>Nonlocal Similarity</topic><topic>Patch Representation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Songze</creatorcontrib><creatorcontrib>Zhou, Xuhuan</creatorcontrib><creatorcontrib>Zhou, Nan</creatorcontrib><creatorcontrib>Sun, Le</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><collection>Korean Studies Information Service System (KISS)</collection><collection>Korean Studies Information Service System (KISS) B-Type</collection><collection>KoreaScience</collection><jtitle>JIPS(Journal of Information Processing Systems)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Songze</au><au>Zhou, Xuhuan</au><au>Zhou, Nan</au><au>Sun, Le</au><au>Wang, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Face Sketch Synthesis Based on Local and Nonlocal Similarity Regularization</atitle><jtitle>JIPS(Journal of Information Processing Systems)</jtitle><addtitle>JIPS(Journal of Information Processing Systems)</addtitle><date>2019-12-31</date><risdate>2019</risdate><volume>15</volume><issue>6</issue><spage>1449</spage><epage>1461</epage><pages>1449-1461</pages><issn>1976-913X</issn><eissn>2092-805X</eissn><abstract>Face sketch synthesis plays an important role in public security and digital entertainment. In this paper, we present a novel face sketch synthesis method via local similarity and nonlocal similarity regularization terms. The local similarity can overcome the technological bottlenecks of the patch representation scheme in traditional learning-based methods. It improves the quality of synthesized sketches by penalizing the dissimilar training patches (thus have very small weights or are discarded). In addition, taking the redundancy of image patches into account, a global nonlocal similarity regularization is employed to restrain the generation of the noise and maintain primitive facial features during the synthesized process. More robust synthesized results can be obtained. Extensive experiments on the public databases validate the generality, effectiveness, and robustness of the proposed algorithm.</abstract><pub>한국정보처리학회</pub><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1976-913X |
ispartof | JIPS(Journal of Information Processing Systems), 2019-12, Vol.15 (6), p.1449-1461 |
issn | 1976-913X 2092-805X |
language | kor |
recordid | cdi_kisti_ndsl_JAKO201914655594060 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Face Sketch Synthesis Local Similarity Nonlocal Similarity Patch Representation |
title | Face Sketch Synthesis Based on Local and Nonlocal Similarity Regularization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A12%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kiss_kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Face%20Sketch%20Synthesis%20Based%20on%20Local%20and%20Nonlocal%20Similarity%20Regularization&rft.jtitle=JIPS(Journal%20of%20Information%20Processing%20Systems)&rft.au=Tang,%20Songze&rft.date=2019-12-31&rft.volume=15&rft.issue=6&rft.spage=1449&rft.epage=1461&rft.pages=1449-1461&rft.issn=1976-913X&rft.eissn=2092-805X&rft_id=info:doi/&rft_dat=%3Ckiss_kisti%3E3738837%3C/kiss_kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_kiss_id=3738837&rfr_iscdi=true |