CERTAIN INTEGRATION FORMULAE FOR THE GENERALIZED k-BESSEL FUNCTIONS AND DELEURE HYPER-BESSEL FUNCTION
Integrals involving a finite product of the generalized Bessel functions have recently been studied by Choi et al. [2, 3]. Motivated by these results, we establish certain unified integral formulas involving a finite product of the generalized k-Bessel functions. Also, we consider some integral form...
Gespeichert in:
Veröffentlicht in: | Communications of the Korean Mathematical Society 2019, Vol.34 (2), p.523-532 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 532 |
---|---|
container_issue | 2 |
container_start_page | 523 |
container_title | Communications of the Korean Mathematical Society |
container_volume | 34 |
creator | Kim, Yongsup |
description | Integrals involving a finite product of the generalized Bessel functions have recently been studied by Choi et al. [2, 3]. Motivated by these results, we establish certain unified integral formulas involving a finite product of the generalized k-Bessel functions. Also, we consider some integral formulas of the (p, q)-extended Bessel functions $J_{{\nu},p,q}(z)$ and the Delerue hyper-Bessel function which are proved in terms of (p, q)-extended generalized hypergeometric functions, and the generalized Wright hypergeometric functions, respectively. |
format | Article |
fullrecord | <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO201914439301451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO201914439301451</sourcerecordid><originalsourceid>FETCH-kisti_ndsl_JAKO2019144393014513</originalsourceid><addsrcrecordid>eNqNyj8LgkAYgPEjCpLyO7xL48H9U2u89DUtO-M8h1qiyECMluv7E0FTU9PzDL8RCYSQikom1JgEXIiI8iSWUxJ631-ZjEWyjBgLSJeidbo0UBqHG6tdWRvIa7tvK42fAVcgbNCg1VV5wgwGusamwQry1qQf3oA2GWRYYWsRiuMB7S-Zk8n98vBd-O2MLHJ0aUGH3r_68_PmH-et3tWC8RVXSq4k4yri8l_3BkosPPg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CERTAIN INTEGRATION FORMULAE FOR THE GENERALIZED k-BESSEL FUNCTIONS AND DELEURE HYPER-BESSEL FUNCTION</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kim, Yongsup</creator><creatorcontrib>Kim, Yongsup</creatorcontrib><description>Integrals involving a finite product of the generalized Bessel functions have recently been studied by Choi et al. [2, 3]. Motivated by these results, we establish certain unified integral formulas involving a finite product of the generalized k-Bessel functions. Also, we consider some integral formulas of the (p, q)-extended Bessel functions $J_{{\nu},p,q}(z)$ and the Delerue hyper-Bessel function which are proved in terms of (p, q)-extended generalized hypergeometric functions, and the generalized Wright hypergeometric functions, respectively.</description><identifier>ISSN: 1225-1763</identifier><identifier>EISSN: 2234-3024</identifier><language>kor</language><ispartof>Communications of the Korean Mathematical Society, 2019, Vol.34 (2), p.523-532</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,4025</link.rule.ids></links><search><creatorcontrib>Kim, Yongsup</creatorcontrib><title>CERTAIN INTEGRATION FORMULAE FOR THE GENERALIZED k-BESSEL FUNCTIONS AND DELEURE HYPER-BESSEL FUNCTION</title><title>Communications of the Korean Mathematical Society</title><addtitle>대한수학회논문집</addtitle><description>Integrals involving a finite product of the generalized Bessel functions have recently been studied by Choi et al. [2, 3]. Motivated by these results, we establish certain unified integral formulas involving a finite product of the generalized k-Bessel functions. Also, we consider some integral formulas of the (p, q)-extended Bessel functions $J_{{\nu},p,q}(z)$ and the Delerue hyper-Bessel function which are proved in terms of (p, q)-extended generalized hypergeometric functions, and the generalized Wright hypergeometric functions, respectively.</description><issn>1225-1763</issn><issn>2234-3024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNqNyj8LgkAYgPEjCpLyO7xL48H9U2u89DUtO-M8h1qiyECMluv7E0FTU9PzDL8RCYSQikom1JgEXIiI8iSWUxJ631-ZjEWyjBgLSJeidbo0UBqHG6tdWRvIa7tvK42fAVcgbNCg1VV5wgwGusamwQry1qQf3oA2GWRYYWsRiuMB7S-Zk8n98vBd-O2MLHJ0aUGH3r_68_PmH-et3tWC8RVXSq4k4yri8l_3BkosPPg</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Kim, Yongsup</creator><scope>JDI</scope></search><sort><creationdate>2019</creationdate><title>CERTAIN INTEGRATION FORMULAE FOR THE GENERALIZED k-BESSEL FUNCTIONS AND DELEURE HYPER-BESSEL FUNCTION</title><author>Kim, Yongsup</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kisti_ndsl_JAKO2019144393014513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yongsup</creatorcontrib><collection>KoreaScience</collection><jtitle>Communications of the Korean Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yongsup</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CERTAIN INTEGRATION FORMULAE FOR THE GENERALIZED k-BESSEL FUNCTIONS AND DELEURE HYPER-BESSEL FUNCTION</atitle><jtitle>Communications of the Korean Mathematical Society</jtitle><addtitle>대한수학회논문집</addtitle><date>2019</date><risdate>2019</risdate><volume>34</volume><issue>2</issue><spage>523</spage><epage>532</epage><pages>523-532</pages><issn>1225-1763</issn><eissn>2234-3024</eissn><abstract>Integrals involving a finite product of the generalized Bessel functions have recently been studied by Choi et al. [2, 3]. Motivated by these results, we establish certain unified integral formulas involving a finite product of the generalized k-Bessel functions. Also, we consider some integral formulas of the (p, q)-extended Bessel functions $J_{{\nu},p,q}(z)$ and the Delerue hyper-Bessel function which are proved in terms of (p, q)-extended generalized hypergeometric functions, and the generalized Wright hypergeometric functions, respectively.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1225-1763 |
ispartof | Communications of the Korean Mathematical Society, 2019, Vol.34 (2), p.523-532 |
issn | 1225-1763 2234-3024 |
language | kor |
recordid | cdi_kisti_ndsl_JAKO201914439301451 |
source | EZB-FREE-00999 freely available EZB journals |
title | CERTAIN INTEGRATION FORMULAE FOR THE GENERALIZED k-BESSEL FUNCTIONS AND DELEURE HYPER-BESSEL FUNCTION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T07%3A45%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CERTAIN%20INTEGRATION%20FORMULAE%20FOR%20THE%20GENERALIZED%20k-BESSEL%20FUNCTIONS%20AND%20DELEURE%20HYPER-BESSEL%20FUNCTION&rft.jtitle=Communications%20of%20the%20Korean%20Mathematical%20Society&rft.au=Kim,%20Yongsup&rft.date=2019&rft.volume=34&rft.issue=2&rft.spage=523&rft.epage=532&rft.pages=523-532&rft.issn=1225-1763&rft.eissn=2234-3024&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO201914439301451%3C/kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |