Applying Topic Modeling and Similarity for Predicting Bug Severity in Cross Projects

Recently, software has increased in complexity and been applied in various industrial fields. As a result, the presence of software bugs cannot be avoided. Various bug severity prediction methodologies have been proposed, but their performance needs to be further improved. In this study, we propose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:KSII transactions on Internet and information systems 2019-03, Vol.13 (3), p.1583-1598
Hauptverfasser: Yang, Geunseok, Min, Kyeongsic, Lee, Jung-Won, Lee, Byungjeong
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1598
container_issue 3
container_start_page 1583
container_title KSII transactions on Internet and information systems
container_volume 13
creator Yang, Geunseok
Min, Kyeongsic
Lee, Jung-Won
Lee, Byungjeong
description Recently, software has increased in complexity and been applied in various industrial fields. As a result, the presence of software bugs cannot be avoided. Various bug severity prediction methodologies have been proposed, but their performance needs to be further improved. In this study, we propose a novel technique for bug severity prediction in cross projects such as Eclipse, Mozilla, WireShark, and Xamarin by using topic modeling and similarity (i.e., KL-divergence). First, we construct topic models from bug repositories in cross projects using Latent Dirichlet Allocation (LDA). Then, we find topics in each project that contain the most numerous similar bug reports by using a new bug report. Next, we extract the bug reports belonging to the selected topics and input them to a Naïve Bayes Multinomial (NBM) algorithm. Finally, we predict the bug severity in the new bug report. In order to evaluate the performance of our approach and to verify the difference between cross projects and single project, we compare it with the Naïve Bayes Multinomial approach; the Lamkanfi methodology, which is a well-known bug severity prediction approach; and an emotional similarity-based bug severity prediction approach. Our approach exhibits a better performance than the compared methods.
format Article
fullrecord <record><control><sourceid>kiss_kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO201914260133554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><kiss_id>3667114</kiss_id><sourcerecordid>3667114</sourcerecordid><originalsourceid>FETCH-LOGICAL-k504-7b5e5c3c8372283e947d35408e72f82f250d79c786eaa4950aa74c5430e078c83</originalsourceid><addsrcrecordid>eNpNjE1LxDAYhIMouKz7C7zk4rGQ7zc91uL3ygrbe8km6RK325akCv33dlXE08wwz8wZWtAcVAYM4Pyfv0SrlMKOUKaZElovUFUMQzuFbo-rfggWv_bOt6doOoe34RhaE8M44aaP-C16F-x4am8_9njrP_13Fzpcxj6lGejfvR3TFbpoTJv86leXqLq_q8rHbL15eCqLdXaQRGSwk15abjUHxjT3uQDHpSDaA2s0a5gkDnILWnljRC6JMSCsFJx4AnqeLdHNz-0hpDHUnUtt_Vy8bBihORVMEcq5nPkluv7jUj3EcDRxqrlSQKngX9KTVNo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Applying Topic Modeling and Similarity for Predicting Bug Severity in Cross Projects</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yang, Geunseok ; Min, Kyeongsic ; Lee, Jung-Won ; Lee, Byungjeong</creator><creatorcontrib>Yang, Geunseok ; Min, Kyeongsic ; Lee, Jung-Won ; Lee, Byungjeong</creatorcontrib><description>Recently, software has increased in complexity and been applied in various industrial fields. As a result, the presence of software bugs cannot be avoided. Various bug severity prediction methodologies have been proposed, but their performance needs to be further improved. In this study, we propose a novel technique for bug severity prediction in cross projects such as Eclipse, Mozilla, WireShark, and Xamarin by using topic modeling and similarity (i.e., KL-divergence). First, we construct topic models from bug repositories in cross projects using Latent Dirichlet Allocation (LDA). Then, we find topics in each project that contain the most numerous similar bug reports by using a new bug report. Next, we extract the bug reports belonging to the selected topics and input them to a Naïve Bayes Multinomial (NBM) algorithm. Finally, we predict the bug severity in the new bug report. In order to evaluate the performance of our approach and to verify the difference between cross projects and single project, we compare it with the Naïve Bayes Multinomial approach; the Lamkanfi methodology, which is a well-known bug severity prediction approach; and an emotional similarity-based bug severity prediction approach. Our approach exhibits a better performance than the compared methods.</description><identifier>ISSN: 1976-7277</identifier><identifier>EISSN: 1976-7277</identifier><language>kor</language><publisher>한국인터넷정보학회</publisher><subject>Bug Report ; Bug Severity Prediction ; Cross Projects ; KL-Divergence ; Topic Modeling</subject><ispartof>KSII transactions on Internet and information systems, 2019-03, Vol.13 (3), p.1583-1598</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882</link.rule.ids></links><search><creatorcontrib>Yang, Geunseok</creatorcontrib><creatorcontrib>Min, Kyeongsic</creatorcontrib><creatorcontrib>Lee, Jung-Won</creatorcontrib><creatorcontrib>Lee, Byungjeong</creatorcontrib><title>Applying Topic Modeling and Similarity for Predicting Bug Severity in Cross Projects</title><title>KSII transactions on Internet and information systems</title><addtitle>KSII Transactions on Internet and Information Systems (TIIS)</addtitle><description>Recently, software has increased in complexity and been applied in various industrial fields. As a result, the presence of software bugs cannot be avoided. Various bug severity prediction methodologies have been proposed, but their performance needs to be further improved. In this study, we propose a novel technique for bug severity prediction in cross projects such as Eclipse, Mozilla, WireShark, and Xamarin by using topic modeling and similarity (i.e., KL-divergence). First, we construct topic models from bug repositories in cross projects using Latent Dirichlet Allocation (LDA). Then, we find topics in each project that contain the most numerous similar bug reports by using a new bug report. Next, we extract the bug reports belonging to the selected topics and input them to a Naïve Bayes Multinomial (NBM) algorithm. Finally, we predict the bug severity in the new bug report. In order to evaluate the performance of our approach and to verify the difference between cross projects and single project, we compare it with the Naïve Bayes Multinomial approach; the Lamkanfi methodology, which is a well-known bug severity prediction approach; and an emotional similarity-based bug severity prediction approach. Our approach exhibits a better performance than the compared methods.</description><subject>Bug Report</subject><subject>Bug Severity Prediction</subject><subject>Cross Projects</subject><subject>KL-Divergence</subject><subject>Topic Modeling</subject><issn>1976-7277</issn><issn>1976-7277</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNpNjE1LxDAYhIMouKz7C7zk4rGQ7zc91uL3ygrbe8km6RK325akCv33dlXE08wwz8wZWtAcVAYM4Pyfv0SrlMKOUKaZElovUFUMQzuFbo-rfggWv_bOt6doOoe34RhaE8M44aaP-C16F-x4am8_9njrP_13Fzpcxj6lGejfvR3TFbpoTJv86leXqLq_q8rHbL15eCqLdXaQRGSwk15abjUHxjT3uQDHpSDaA2s0a5gkDnILWnljRC6JMSCsFJx4AnqeLdHNz-0hpDHUnUtt_Vy8bBihORVMEcq5nPkluv7jUj3EcDRxqrlSQKngX9KTVNo</recordid><startdate>20190330</startdate><enddate>20190330</enddate><creator>Yang, Geunseok</creator><creator>Min, Kyeongsic</creator><creator>Lee, Jung-Won</creator><creator>Lee, Byungjeong</creator><general>한국인터넷정보학회</general><scope>HZB</scope><scope>Q5X</scope><scope>JDI</scope></search><sort><creationdate>20190330</creationdate><title>Applying Topic Modeling and Similarity for Predicting Bug Severity in Cross Projects</title><author>Yang, Geunseok ; Min, Kyeongsic ; Lee, Jung-Won ; Lee, Byungjeong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-k504-7b5e5c3c8372283e947d35408e72f82f250d79c786eaa4950aa74c5430e078c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2019</creationdate><topic>Bug Report</topic><topic>Bug Severity Prediction</topic><topic>Cross Projects</topic><topic>KL-Divergence</topic><topic>Topic Modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Geunseok</creatorcontrib><creatorcontrib>Min, Kyeongsic</creatorcontrib><creatorcontrib>Lee, Jung-Won</creatorcontrib><creatorcontrib>Lee, Byungjeong</creatorcontrib><collection>Korean Studies Information Service System (KISS)</collection><collection>Korean Studies Information Service System (KISS) B-Type</collection><collection>KoreaScience</collection><jtitle>KSII transactions on Internet and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Geunseok</au><au>Min, Kyeongsic</au><au>Lee, Jung-Won</au><au>Lee, Byungjeong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applying Topic Modeling and Similarity for Predicting Bug Severity in Cross Projects</atitle><jtitle>KSII transactions on Internet and information systems</jtitle><addtitle>KSII Transactions on Internet and Information Systems (TIIS)</addtitle><date>2019-03-30</date><risdate>2019</risdate><volume>13</volume><issue>3</issue><spage>1583</spage><epage>1598</epage><pages>1583-1598</pages><issn>1976-7277</issn><eissn>1976-7277</eissn><abstract>Recently, software has increased in complexity and been applied in various industrial fields. As a result, the presence of software bugs cannot be avoided. Various bug severity prediction methodologies have been proposed, but their performance needs to be further improved. In this study, we propose a novel technique for bug severity prediction in cross projects such as Eclipse, Mozilla, WireShark, and Xamarin by using topic modeling and similarity (i.e., KL-divergence). First, we construct topic models from bug repositories in cross projects using Latent Dirichlet Allocation (LDA). Then, we find topics in each project that contain the most numerous similar bug reports by using a new bug report. Next, we extract the bug reports belonging to the selected topics and input them to a Naïve Bayes Multinomial (NBM) algorithm. Finally, we predict the bug severity in the new bug report. In order to evaluate the performance of our approach and to verify the difference between cross projects and single project, we compare it with the Naïve Bayes Multinomial approach; the Lamkanfi methodology, which is a well-known bug severity prediction approach; and an emotional similarity-based bug severity prediction approach. Our approach exhibits a better performance than the compared methods.</abstract><pub>한국인터넷정보학회</pub><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1976-7277
ispartof KSII transactions on Internet and information systems, 2019-03, Vol.13 (3), p.1583-1598
issn 1976-7277
1976-7277
language kor
recordid cdi_kisti_ndsl_JAKO201914260133554
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Bug Report
Bug Severity Prediction
Cross Projects
KL-Divergence
Topic Modeling
title Applying Topic Modeling and Similarity for Predicting Bug Severity in Cross Projects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A36%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kiss_kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applying%20Topic%20Modeling%20and%20Similarity%20for%20Predicting%20Bug%20Severity%20in%20Cross%20Projects&rft.jtitle=KSII%20transactions%20on%20Internet%20and%20information%20systems&rft.au=Yang,%20Geunseok&rft.date=2019-03-30&rft.volume=13&rft.issue=3&rft.spage=1583&rft.epage=1598&rft.pages=1583-1598&rft.issn=1976-7277&rft.eissn=1976-7277&rft_id=info:doi/&rft_dat=%3Ckiss_kisti%3E3667114%3C/kiss_kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_kiss_id=3667114&rfr_iscdi=true