Applying Topic Modeling and Similarity for Predicting Bug Severity in Cross Projects
Recently, software has increased in complexity and been applied in various industrial fields. As a result, the presence of software bugs cannot be avoided. Various bug severity prediction methodologies have been proposed, but their performance needs to be further improved. In this study, we propose...
Gespeichert in:
Veröffentlicht in: | KSII transactions on Internet and information systems 2019-03, Vol.13 (3), p.1583-1598 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1598 |
---|---|
container_issue | 3 |
container_start_page | 1583 |
container_title | KSII transactions on Internet and information systems |
container_volume | 13 |
creator | Yang, Geunseok Min, Kyeongsic Lee, Jung-Won Lee, Byungjeong |
description | Recently, software has increased in complexity and been applied in various industrial fields. As a result, the presence of software bugs cannot be avoided. Various bug severity prediction methodologies have been proposed, but their performance needs to be further improved. In this study, we propose a novel technique for bug severity prediction in cross projects such as Eclipse, Mozilla, WireShark, and Xamarin by using topic modeling and similarity (i.e., KL-divergence). First, we construct topic models from bug repositories in cross projects using Latent Dirichlet Allocation (LDA). Then, we find topics in each project that contain the most numerous similar bug reports by using a new bug report. Next, we extract the bug reports belonging to the selected topics and input them to a Naïve Bayes Multinomial (NBM) algorithm. Finally, we predict the bug severity in the new bug report. In order to evaluate the performance of our approach and to verify the difference between cross projects and single project, we compare it with the Naïve Bayes Multinomial approach; the Lamkanfi methodology, which is a well-known bug severity prediction approach; and an emotional similarity-based bug severity prediction approach. Our approach exhibits a better performance than the compared methods. |
format | Article |
fullrecord | <record><control><sourceid>kiss_kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO201914260133554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><kiss_id>3667114</kiss_id><sourcerecordid>3667114</sourcerecordid><originalsourceid>FETCH-LOGICAL-k504-7b5e5c3c8372283e947d35408e72f82f250d79c786eaa4950aa74c5430e078c83</originalsourceid><addsrcrecordid>eNpNjE1LxDAYhIMouKz7C7zk4rGQ7zc91uL3ygrbe8km6RK325akCv33dlXE08wwz8wZWtAcVAYM4Pyfv0SrlMKOUKaZElovUFUMQzuFbo-rfggWv_bOt6doOoe34RhaE8M44aaP-C16F-x4am8_9njrP_13Fzpcxj6lGejfvR3TFbpoTJv86leXqLq_q8rHbL15eCqLdXaQRGSwk15abjUHxjT3uQDHpSDaA2s0a5gkDnILWnljRC6JMSCsFJx4AnqeLdHNz-0hpDHUnUtt_Vy8bBihORVMEcq5nPkluv7jUj3EcDRxqrlSQKngX9KTVNo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Applying Topic Modeling and Similarity for Predicting Bug Severity in Cross Projects</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yang, Geunseok ; Min, Kyeongsic ; Lee, Jung-Won ; Lee, Byungjeong</creator><creatorcontrib>Yang, Geunseok ; Min, Kyeongsic ; Lee, Jung-Won ; Lee, Byungjeong</creatorcontrib><description>Recently, software has increased in complexity and been applied in various industrial fields. As a result, the presence of software bugs cannot be avoided. Various bug severity prediction methodologies have been proposed, but their performance needs to be further improved. In this study, we propose a novel technique for bug severity prediction in cross projects such as Eclipse, Mozilla, WireShark, and Xamarin by using topic modeling and similarity (i.e., KL-divergence). First, we construct topic models from bug repositories in cross projects using Latent Dirichlet Allocation (LDA). Then, we find topics in each project that contain the most numerous similar bug reports by using a new bug report. Next, we extract the bug reports belonging to the selected topics and input them to a Naïve Bayes Multinomial (NBM) algorithm. Finally, we predict the bug severity in the new bug report. In order to evaluate the performance of our approach and to verify the difference between cross projects and single project, we compare it with the Naïve Bayes Multinomial approach; the Lamkanfi methodology, which is a well-known bug severity prediction approach; and an emotional similarity-based bug severity prediction approach. Our approach exhibits a better performance than the compared methods.</description><identifier>ISSN: 1976-7277</identifier><identifier>EISSN: 1976-7277</identifier><language>kor</language><publisher>한국인터넷정보학회</publisher><subject>Bug Report ; Bug Severity Prediction ; Cross Projects ; KL-Divergence ; Topic Modeling</subject><ispartof>KSII transactions on Internet and information systems, 2019-03, Vol.13 (3), p.1583-1598</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882</link.rule.ids></links><search><creatorcontrib>Yang, Geunseok</creatorcontrib><creatorcontrib>Min, Kyeongsic</creatorcontrib><creatorcontrib>Lee, Jung-Won</creatorcontrib><creatorcontrib>Lee, Byungjeong</creatorcontrib><title>Applying Topic Modeling and Similarity for Predicting Bug Severity in Cross Projects</title><title>KSII transactions on Internet and information systems</title><addtitle>KSII Transactions on Internet and Information Systems (TIIS)</addtitle><description>Recently, software has increased in complexity and been applied in various industrial fields. As a result, the presence of software bugs cannot be avoided. Various bug severity prediction methodologies have been proposed, but their performance needs to be further improved. In this study, we propose a novel technique for bug severity prediction in cross projects such as Eclipse, Mozilla, WireShark, and Xamarin by using topic modeling and similarity (i.e., KL-divergence). First, we construct topic models from bug repositories in cross projects using Latent Dirichlet Allocation (LDA). Then, we find topics in each project that contain the most numerous similar bug reports by using a new bug report. Next, we extract the bug reports belonging to the selected topics and input them to a Naïve Bayes Multinomial (NBM) algorithm. Finally, we predict the bug severity in the new bug report. In order to evaluate the performance of our approach and to verify the difference between cross projects and single project, we compare it with the Naïve Bayes Multinomial approach; the Lamkanfi methodology, which is a well-known bug severity prediction approach; and an emotional similarity-based bug severity prediction approach. Our approach exhibits a better performance than the compared methods.</description><subject>Bug Report</subject><subject>Bug Severity Prediction</subject><subject>Cross Projects</subject><subject>KL-Divergence</subject><subject>Topic Modeling</subject><issn>1976-7277</issn><issn>1976-7277</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNpNjE1LxDAYhIMouKz7C7zk4rGQ7zc91uL3ygrbe8km6RK325akCv33dlXE08wwz8wZWtAcVAYM4Pyfv0SrlMKOUKaZElovUFUMQzuFbo-rfggWv_bOt6doOoe34RhaE8M44aaP-C16F-x4am8_9njrP_13Fzpcxj6lGejfvR3TFbpoTJv86leXqLq_q8rHbL15eCqLdXaQRGSwk15abjUHxjT3uQDHpSDaA2s0a5gkDnILWnljRC6JMSCsFJx4AnqeLdHNz-0hpDHUnUtt_Vy8bBihORVMEcq5nPkluv7jUj3EcDRxqrlSQKngX9KTVNo</recordid><startdate>20190330</startdate><enddate>20190330</enddate><creator>Yang, Geunseok</creator><creator>Min, Kyeongsic</creator><creator>Lee, Jung-Won</creator><creator>Lee, Byungjeong</creator><general>한국인터넷정보학회</general><scope>HZB</scope><scope>Q5X</scope><scope>JDI</scope></search><sort><creationdate>20190330</creationdate><title>Applying Topic Modeling and Similarity for Predicting Bug Severity in Cross Projects</title><author>Yang, Geunseok ; Min, Kyeongsic ; Lee, Jung-Won ; Lee, Byungjeong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-k504-7b5e5c3c8372283e947d35408e72f82f250d79c786eaa4950aa74c5430e078c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2019</creationdate><topic>Bug Report</topic><topic>Bug Severity Prediction</topic><topic>Cross Projects</topic><topic>KL-Divergence</topic><topic>Topic Modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Geunseok</creatorcontrib><creatorcontrib>Min, Kyeongsic</creatorcontrib><creatorcontrib>Lee, Jung-Won</creatorcontrib><creatorcontrib>Lee, Byungjeong</creatorcontrib><collection>Korean Studies Information Service System (KISS)</collection><collection>Korean Studies Information Service System (KISS) B-Type</collection><collection>KoreaScience</collection><jtitle>KSII transactions on Internet and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Geunseok</au><au>Min, Kyeongsic</au><au>Lee, Jung-Won</au><au>Lee, Byungjeong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applying Topic Modeling and Similarity for Predicting Bug Severity in Cross Projects</atitle><jtitle>KSII transactions on Internet and information systems</jtitle><addtitle>KSII Transactions on Internet and Information Systems (TIIS)</addtitle><date>2019-03-30</date><risdate>2019</risdate><volume>13</volume><issue>3</issue><spage>1583</spage><epage>1598</epage><pages>1583-1598</pages><issn>1976-7277</issn><eissn>1976-7277</eissn><abstract>Recently, software has increased in complexity and been applied in various industrial fields. As a result, the presence of software bugs cannot be avoided. Various bug severity prediction methodologies have been proposed, but their performance needs to be further improved. In this study, we propose a novel technique for bug severity prediction in cross projects such as Eclipse, Mozilla, WireShark, and Xamarin by using topic modeling and similarity (i.e., KL-divergence). First, we construct topic models from bug repositories in cross projects using Latent Dirichlet Allocation (LDA). Then, we find topics in each project that contain the most numerous similar bug reports by using a new bug report. Next, we extract the bug reports belonging to the selected topics and input them to a Naïve Bayes Multinomial (NBM) algorithm. Finally, we predict the bug severity in the new bug report. In order to evaluate the performance of our approach and to verify the difference between cross projects and single project, we compare it with the Naïve Bayes Multinomial approach; the Lamkanfi methodology, which is a well-known bug severity prediction approach; and an emotional similarity-based bug severity prediction approach. Our approach exhibits a better performance than the compared methods.</abstract><pub>한국인터넷정보학회</pub><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1976-7277 |
ispartof | KSII transactions on Internet and information systems, 2019-03, Vol.13 (3), p.1583-1598 |
issn | 1976-7277 1976-7277 |
language | kor |
recordid | cdi_kisti_ndsl_JAKO201914260133554 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Bug Report Bug Severity Prediction Cross Projects KL-Divergence Topic Modeling |
title | Applying Topic Modeling and Similarity for Predicting Bug Severity in Cross Projects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A36%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kiss_kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applying%20Topic%20Modeling%20and%20Similarity%20for%20Predicting%20Bug%20Severity%20in%20Cross%20Projects&rft.jtitle=KSII%20transactions%20on%20Internet%20and%20information%20systems&rft.au=Yang,%20Geunseok&rft.date=2019-03-30&rft.volume=13&rft.issue=3&rft.spage=1583&rft.epage=1598&rft.pages=1583-1598&rft.issn=1976-7277&rft.eissn=1976-7277&rft_id=info:doi/&rft_dat=%3Ckiss_kisti%3E3667114%3C/kiss_kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_kiss_id=3667114&rfr_iscdi=true |