Tensor-based tag emotion aware recommendation with probabilistic ranking

In our previous research, we proposed a tag emotion-based item recommendation scheme. The ternary associations among users, items, and tags are described as a three-order tensor in order to capture the emotions in tags. The candidates for recommendation are created based on the latent semantics deri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:KSII transactions on Internet and information systems 2019-12, Vol.13 (12), p.5826-5841
Hauptverfasser: Lim, Hyewon, Kim, Hyoung-Joo
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5841
container_issue 12
container_start_page 5826
container_title KSII transactions on Internet and information systems
container_volume 13
creator Lim, Hyewon
Kim, Hyoung-Joo
description In our previous research, we proposed a tag emotion-based item recommendation scheme. The ternary associations among users, items, and tags are described as a three-order tensor in order to capture the emotions in tags. The candidates for recommendation are created based on the latent semantics derived by a high-order singular value decomposition technique (HOSVD). However, the tensor is very sparse because the number of tagged items is smaller than the amount of all items. The previous research do not consider the previous behaviors of users and items. To mitigate the problems, in this paper, the item-based collaborative filtering scheme is used to build an extended data. We also apply the probabilistic ranking algorithm considering the user and item profiles to improve the recommendation performance. The proposed method is evaluated based on Movielens dataset, and the results show that our approach improves the performance compared to other methods.
format Article
fullrecord <record><control><sourceid>kiss_kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO201905960009586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><kiss_id>3738629</kiss_id><sourcerecordid>3738629</sourcerecordid><originalsourceid>FETCH-LOGICAL-k506-48c1969fe06639c2c3e83b398cf239eb1bb34ecc0694dc561b8a727ee0c8b7183</originalsourceid><addsrcrecordid>eNpNjstqwzAUREVpoSHNF2SjTZcGPWzpahlC27QNZOO9keTrRNiWg2QI_fumD0pXMwyHmbkhC260KrTQ-vafvyernINjXIBQJcCC7GqMeUqFsxlbOtsjxXGawxSpvdiENKGfxhFja7_DS5hP9JwmZ10YQp6Dp8nGPsTjA7nr7JBx9atLUj8_1dtdsT-8vG43-6KvmCpK8Nwo0yFTShovvESQThrwnZAGHXdOlug9U6ZsfaW4A3s9jsg8OM1BLsnjT23_td7ENg_N2-b9IBg3rDKKMWYqUFdu_cfl5pzCaNNHI7UEJYz8BDKfUmM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tensor-based tag emotion aware recommendation with probabilistic ranking</title><source>EZB Electronic Journals Library</source><creator>Lim, Hyewon ; Kim, Hyoung-Joo</creator><creatorcontrib>Lim, Hyewon ; Kim, Hyoung-Joo</creatorcontrib><description>In our previous research, we proposed a tag emotion-based item recommendation scheme. The ternary associations among users, items, and tags are described as a three-order tensor in order to capture the emotions in tags. The candidates for recommendation are created based on the latent semantics derived by a high-order singular value decomposition technique (HOSVD). However, the tensor is very sparse because the number of tagged items is smaller than the amount of all items. The previous research do not consider the previous behaviors of users and items. To mitigate the problems, in this paper, the item-based collaborative filtering scheme is used to build an extended data. We also apply the probabilistic ranking algorithm considering the user and item profiles to improve the recommendation performance. The proposed method is evaluated based on Movielens dataset, and the results show that our approach improves the performance compared to other methods.</description><identifier>ISSN: 1976-7277</identifier><identifier>EISSN: 1976-7277</identifier><language>kor</language><publisher>한국인터넷정보학회</publisher><subject>BM25 ; High-Order Singular Value Decomposition (HOSVD) ; item-based filtering ; Recommendation ; tag</subject><ispartof>KSII transactions on Internet and information systems, 2019-12, Vol.13 (12), p.5826-5841</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids></links><search><creatorcontrib>Lim, Hyewon</creatorcontrib><creatorcontrib>Kim, Hyoung-Joo</creatorcontrib><title>Tensor-based tag emotion aware recommendation with probabilistic ranking</title><title>KSII transactions on Internet and information systems</title><addtitle>KSII Transactions on Internet and Information Systems (TIIS)</addtitle><description>In our previous research, we proposed a tag emotion-based item recommendation scheme. The ternary associations among users, items, and tags are described as a three-order tensor in order to capture the emotions in tags. The candidates for recommendation are created based on the latent semantics derived by a high-order singular value decomposition technique (HOSVD). However, the tensor is very sparse because the number of tagged items is smaller than the amount of all items. The previous research do not consider the previous behaviors of users and items. To mitigate the problems, in this paper, the item-based collaborative filtering scheme is used to build an extended data. We also apply the probabilistic ranking algorithm considering the user and item profiles to improve the recommendation performance. The proposed method is evaluated based on Movielens dataset, and the results show that our approach improves the performance compared to other methods.</description><subject>BM25</subject><subject>High-Order Singular Value Decomposition (HOSVD)</subject><subject>item-based filtering</subject><subject>Recommendation</subject><subject>tag</subject><issn>1976-7277</issn><issn>1976-7277</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNpNjstqwzAUREVpoSHNF2SjTZcGPWzpahlC27QNZOO9keTrRNiWg2QI_fumD0pXMwyHmbkhC260KrTQ-vafvyernINjXIBQJcCC7GqMeUqFsxlbOtsjxXGawxSpvdiENKGfxhFja7_DS5hP9JwmZ10YQp6Dp8nGPsTjA7nr7JBx9atLUj8_1dtdsT-8vG43-6KvmCpK8Nwo0yFTShovvESQThrwnZAGHXdOlug9U6ZsfaW4A3s9jsg8OM1BLsnjT23_td7ENg_N2-b9IBg3rDKKMWYqUFdu_cfl5pzCaNNHI7UEJYz8BDKfUmM</recordid><startdate>20191230</startdate><enddate>20191230</enddate><creator>Lim, Hyewon</creator><creator>Kim, Hyoung-Joo</creator><general>한국인터넷정보학회</general><scope>HZB</scope><scope>Q5X</scope><scope>JDI</scope></search><sort><creationdate>20191230</creationdate><title>Tensor-based tag emotion aware recommendation with probabilistic ranking</title><author>Lim, Hyewon ; Kim, Hyoung-Joo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-k506-48c1969fe06639c2c3e83b398cf239eb1bb34ecc0694dc561b8a727ee0c8b7183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2019</creationdate><topic>BM25</topic><topic>High-Order Singular Value Decomposition (HOSVD)</topic><topic>item-based filtering</topic><topic>Recommendation</topic><topic>tag</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Hyewon</creatorcontrib><creatorcontrib>Kim, Hyoung-Joo</creatorcontrib><collection>KISS(한국학술정보)</collection><collection>Korean Studies Information Service System (KISS) B-Type</collection><collection>KoreaScience</collection><jtitle>KSII transactions on Internet and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Hyewon</au><au>Kim, Hyoung-Joo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensor-based tag emotion aware recommendation with probabilistic ranking</atitle><jtitle>KSII transactions on Internet and information systems</jtitle><addtitle>KSII Transactions on Internet and Information Systems (TIIS)</addtitle><date>2019-12-30</date><risdate>2019</risdate><volume>13</volume><issue>12</issue><spage>5826</spage><epage>5841</epage><pages>5826-5841</pages><issn>1976-7277</issn><eissn>1976-7277</eissn><abstract>In our previous research, we proposed a tag emotion-based item recommendation scheme. The ternary associations among users, items, and tags are described as a three-order tensor in order to capture the emotions in tags. The candidates for recommendation are created based on the latent semantics derived by a high-order singular value decomposition technique (HOSVD). However, the tensor is very sparse because the number of tagged items is smaller than the amount of all items. The previous research do not consider the previous behaviors of users and items. To mitigate the problems, in this paper, the item-based collaborative filtering scheme is used to build an extended data. We also apply the probabilistic ranking algorithm considering the user and item profiles to improve the recommendation performance. The proposed method is evaluated based on Movielens dataset, and the results show that our approach improves the performance compared to other methods.</abstract><pub>한국인터넷정보학회</pub><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1976-7277
ispartof KSII transactions on Internet and information systems, 2019-12, Vol.13 (12), p.5826-5841
issn 1976-7277
1976-7277
language kor
recordid cdi_kisti_ndsl_JAKO201905960009586
source EZB Electronic Journals Library
subjects BM25
High-Order Singular Value Decomposition (HOSVD)
item-based filtering
Recommendation
tag
title Tensor-based tag emotion aware recommendation with probabilistic ranking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kiss_kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensor-based%20tag%20emotion%20aware%20recommendation%20with%20probabilistic%20ranking&rft.jtitle=KSII%20transactions%20on%20Internet%20and%20information%20systems&rft.au=Lim,%20Hyewon&rft.date=2019-12-30&rft.volume=13&rft.issue=12&rft.spage=5826&rft.epage=5841&rft.pages=5826-5841&rft.issn=1976-7277&rft.eissn=1976-7277&rft_id=info:doi/&rft_dat=%3Ckiss_kisti%3E3738629%3C/kiss_kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_kiss_id=3738629&rfr_iscdi=true