Human Activities Recognition Based on Skeleton Information via Sparse Representation
Human activities recognition is a challenging task due to its complexity of human movements and the variety performed by different subjects for the same action. This paper presents a recognition algorithm by using skeleton information generated from depth maps. Concatenating motion features and temp...
Gespeichert in:
Veröffentlicht in: | Journal of computing science and engineering : JCSE 2018, Vol.12 (1), p.1-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Journal of computing science and engineering : JCSE |
container_volume | 12 |
creator | Liu, Suolan Kong, Lizhi Wang, Hongyuan |
description | Human activities recognition is a challenging task due to its complexity of human movements and the variety performed by different subjects for the same action. This paper presents a recognition algorithm by using skeleton information generated from depth maps. Concatenating motion features and temporal constraint feature produces feature vector. Reducing dictionary scale proposes an improved fast classifier based on sparse representation. The developed method is shown to be effective by recognizing different activities on the UTD-MHAD dataset. Comparison results indicate superior performance of our method over some existing methods. |
format | Article |
fullrecord | <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO201826457054441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO201826457054441</sourcerecordid><originalsourceid>FETCH-kisti_ndsl_JAKO2018264570544413</originalsourceid><addsrcrecordid>eNqNi8sKgkAYRmdRkJTvMJuWgpe55NKisFoE6V4m_Y1BHcV_8vkT6QFafQfO-VbECWIpPCak3BAXUb98HkVSSB47JE8_nTI0Ka2etNWA9All_zYz94YeFUJFZ8gaaMHOcDV1P3ZqsZNWNBvUiDCfhhEQjF3Mjqxr1SK4v92S_eWcn1Kv0Wh1YSpsi1tyf4R-cAgF49LnjLEg-rf7AoC1P0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Human Activities Recognition Based on Skeleton Information via Sparse Representation</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Liu, Suolan ; Kong, Lizhi ; Wang, Hongyuan</creator><creatorcontrib>Liu, Suolan ; Kong, Lizhi ; Wang, Hongyuan</creatorcontrib><description>Human activities recognition is a challenging task due to its complexity of human movements and the variety performed by different subjects for the same action. This paper presents a recognition algorithm by using skeleton information generated from depth maps. Concatenating motion features and temporal constraint feature produces feature vector. Reducing dictionary scale proposes an improved fast classifier based on sparse representation. The developed method is shown to be effective by recognizing different activities on the UTD-MHAD dataset. Comparison results indicate superior performance of our method over some existing methods.</description><identifier>ISSN: 1976-4677</identifier><language>kor</language><ispartof>Journal of computing science and engineering : JCSE, 2018, Vol.12 (1), p.1-11</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024</link.rule.ids></links><search><creatorcontrib>Liu, Suolan</creatorcontrib><creatorcontrib>Kong, Lizhi</creatorcontrib><creatorcontrib>Wang, Hongyuan</creatorcontrib><title>Human Activities Recognition Based on Skeleton Information via Sparse Representation</title><title>Journal of computing science and engineering : JCSE</title><addtitle>Journal of computing science and engineering</addtitle><description>Human activities recognition is a challenging task due to its complexity of human movements and the variety performed by different subjects for the same action. This paper presents a recognition algorithm by using skeleton information generated from depth maps. Concatenating motion features and temporal constraint feature produces feature vector. Reducing dictionary scale proposes an improved fast classifier based on sparse representation. The developed method is shown to be effective by recognizing different activities on the UTD-MHAD dataset. Comparison results indicate superior performance of our method over some existing methods.</description><issn>1976-4677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNqNi8sKgkAYRmdRkJTvMJuWgpe55NKisFoE6V4m_Y1BHcV_8vkT6QFafQfO-VbECWIpPCak3BAXUb98HkVSSB47JE8_nTI0Ka2etNWA9All_zYz94YeFUJFZ8gaaMHOcDV1P3ZqsZNWNBvUiDCfhhEQjF3Mjqxr1SK4v92S_eWcn1Kv0Wh1YSpsi1tyf4R-cAgF49LnjLEg-rf7AoC1P0g</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Liu, Suolan</creator><creator>Kong, Lizhi</creator><creator>Wang, Hongyuan</creator><scope>JDI</scope></search><sort><creationdate>2018</creationdate><title>Human Activities Recognition Based on Skeleton Information via Sparse Representation</title><author>Liu, Suolan ; Kong, Lizhi ; Wang, Hongyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kisti_ndsl_JAKO2018264570544413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Suolan</creatorcontrib><creatorcontrib>Kong, Lizhi</creatorcontrib><creatorcontrib>Wang, Hongyuan</creatorcontrib><collection>KoreaScience</collection><jtitle>Journal of computing science and engineering : JCSE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Suolan</au><au>Kong, Lizhi</au><au>Wang, Hongyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human Activities Recognition Based on Skeleton Information via Sparse Representation</atitle><jtitle>Journal of computing science and engineering : JCSE</jtitle><addtitle>Journal of computing science and engineering</addtitle><date>2018</date><risdate>2018</risdate><volume>12</volume><issue>1</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1976-4677</issn><abstract>Human activities recognition is a challenging task due to its complexity of human movements and the variety performed by different subjects for the same action. This paper presents a recognition algorithm by using skeleton information generated from depth maps. Concatenating motion features and temporal constraint feature produces feature vector. Reducing dictionary scale proposes an improved fast classifier based on sparse representation. The developed method is shown to be effective by recognizing different activities on the UTD-MHAD dataset. Comparison results indicate superior performance of our method over some existing methods.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1976-4677 |
ispartof | Journal of computing science and engineering : JCSE, 2018, Vol.12 (1), p.1-11 |
issn | 1976-4677 |
language | kor |
recordid | cdi_kisti_ndsl_JAKO201826457054441 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Human Activities Recognition Based on Skeleton Information via Sparse Representation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T20%3A02%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20Activities%20Recognition%20Based%20on%20Skeleton%20Information%20via%20Sparse%20Representation&rft.jtitle=Journal%20of%20computing%20science%20and%20engineering%20:%20JCSE&rft.au=Liu,%20Suolan&rft.date=2018&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1976-4677&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO201826457054441%3C/kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |