Human Activities Recognition Based on Skeleton Information via Sparse Representation

Human activities recognition is a challenging task due to its complexity of human movements and the variety performed by different subjects for the same action. This paper presents a recognition algorithm by using skeleton information generated from depth maps. Concatenating motion features and temp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computing science and engineering : JCSE 2018, Vol.12 (1), p.1-11
Hauptverfasser: Liu, Suolan, Kong, Lizhi, Wang, Hongyuan
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 1
container_start_page 1
container_title Journal of computing science and engineering : JCSE
container_volume 12
creator Liu, Suolan
Kong, Lizhi
Wang, Hongyuan
description Human activities recognition is a challenging task due to its complexity of human movements and the variety performed by different subjects for the same action. This paper presents a recognition algorithm by using skeleton information generated from depth maps. Concatenating motion features and temporal constraint feature produces feature vector. Reducing dictionary scale proposes an improved fast classifier based on sparse representation. The developed method is shown to be effective by recognizing different activities on the UTD-MHAD dataset. Comparison results indicate superior performance of our method over some existing methods.
format Article
fullrecord <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO201826457054441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO201826457054441</sourcerecordid><originalsourceid>FETCH-kisti_ndsl_JAKO2018264570544413</originalsourceid><addsrcrecordid>eNqNi8sKgkAYRmdRkJTvMJuWgpe55NKisFoE6V4m_Y1BHcV_8vkT6QFafQfO-VbECWIpPCak3BAXUb98HkVSSB47JE8_nTI0Ka2etNWA9All_zYz94YeFUJFZ8gaaMHOcDV1P3ZqsZNWNBvUiDCfhhEQjF3Mjqxr1SK4v92S_eWcn1Kv0Wh1YSpsi1tyf4R-cAgF49LnjLEg-rf7AoC1P0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Human Activities Recognition Based on Skeleton Information via Sparse Representation</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Liu, Suolan ; Kong, Lizhi ; Wang, Hongyuan</creator><creatorcontrib>Liu, Suolan ; Kong, Lizhi ; Wang, Hongyuan</creatorcontrib><description>Human activities recognition is a challenging task due to its complexity of human movements and the variety performed by different subjects for the same action. This paper presents a recognition algorithm by using skeleton information generated from depth maps. Concatenating motion features and temporal constraint feature produces feature vector. Reducing dictionary scale proposes an improved fast classifier based on sparse representation. The developed method is shown to be effective by recognizing different activities on the UTD-MHAD dataset. Comparison results indicate superior performance of our method over some existing methods.</description><identifier>ISSN: 1976-4677</identifier><language>kor</language><ispartof>Journal of computing science and engineering : JCSE, 2018, Vol.12 (1), p.1-11</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024</link.rule.ids></links><search><creatorcontrib>Liu, Suolan</creatorcontrib><creatorcontrib>Kong, Lizhi</creatorcontrib><creatorcontrib>Wang, Hongyuan</creatorcontrib><title>Human Activities Recognition Based on Skeleton Information via Sparse Representation</title><title>Journal of computing science and engineering : JCSE</title><addtitle>Journal of computing science and engineering</addtitle><description>Human activities recognition is a challenging task due to its complexity of human movements and the variety performed by different subjects for the same action. This paper presents a recognition algorithm by using skeleton information generated from depth maps. Concatenating motion features and temporal constraint feature produces feature vector. Reducing dictionary scale proposes an improved fast classifier based on sparse representation. The developed method is shown to be effective by recognizing different activities on the UTD-MHAD dataset. Comparison results indicate superior performance of our method over some existing methods.</description><issn>1976-4677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNqNi8sKgkAYRmdRkJTvMJuWgpe55NKisFoE6V4m_Y1BHcV_8vkT6QFafQfO-VbECWIpPCak3BAXUb98HkVSSB47JE8_nTI0Ka2etNWA9All_zYz94YeFUJFZ8gaaMHOcDV1P3ZqsZNWNBvUiDCfhhEQjF3Mjqxr1SK4v92S_eWcn1Kv0Wh1YSpsi1tyf4R-cAgF49LnjLEg-rf7AoC1P0g</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Liu, Suolan</creator><creator>Kong, Lizhi</creator><creator>Wang, Hongyuan</creator><scope>JDI</scope></search><sort><creationdate>2018</creationdate><title>Human Activities Recognition Based on Skeleton Information via Sparse Representation</title><author>Liu, Suolan ; Kong, Lizhi ; Wang, Hongyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kisti_ndsl_JAKO2018264570544413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Suolan</creatorcontrib><creatorcontrib>Kong, Lizhi</creatorcontrib><creatorcontrib>Wang, Hongyuan</creatorcontrib><collection>KoreaScience</collection><jtitle>Journal of computing science and engineering : JCSE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Suolan</au><au>Kong, Lizhi</au><au>Wang, Hongyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human Activities Recognition Based on Skeleton Information via Sparse Representation</atitle><jtitle>Journal of computing science and engineering : JCSE</jtitle><addtitle>Journal of computing science and engineering</addtitle><date>2018</date><risdate>2018</risdate><volume>12</volume><issue>1</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1976-4677</issn><abstract>Human activities recognition is a challenging task due to its complexity of human movements and the variety performed by different subjects for the same action. This paper presents a recognition algorithm by using skeleton information generated from depth maps. Concatenating motion features and temporal constraint feature produces feature vector. Reducing dictionary scale proposes an improved fast classifier based on sparse representation. The developed method is shown to be effective by recognizing different activities on the UTD-MHAD dataset. Comparison results indicate superior performance of our method over some existing methods.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1976-4677
ispartof Journal of computing science and engineering : JCSE, 2018, Vol.12 (1), p.1-11
issn 1976-4677
language kor
recordid cdi_kisti_ndsl_JAKO201826457054441
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Human Activities Recognition Based on Skeleton Information via Sparse Representation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T20%3A02%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20Activities%20Recognition%20Based%20on%20Skeleton%20Information%20via%20Sparse%20Representation&rft.jtitle=Journal%20of%20computing%20science%20and%20engineering%20:%20JCSE&rft.au=Liu,%20Suolan&rft.date=2018&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1976-4677&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO201826457054441%3C/kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true