Note on Cellular Structure of Edge Colored Partition Algebras
In this paper, we study the cellular structure of the G-edge colored partition algebras, when G is a finite group. Further, we classified all the irreducible representations of these algebras using their cellular structure whenever G is a finite cyclic group. Also we prove that the ${\mathbb{Z}}/r{\...
Gespeichert in:
Veröffentlicht in: | Kyungpook mathematical journal 2016, Vol.56 (3), p.669-682 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 682 |
---|---|
container_issue | 3 |
container_start_page | 669 |
container_title | Kyungpook mathematical journal |
container_volume | 56 |
creator | Kennedy, A. Joseph Muniasamy, G |
description | In this paper, we study the cellular structure of the G-edge colored partition algebras, when G is a finite group. Further, we classified all the irreducible representations of these algebras using their cellular structure whenever G is a finite cyclic group. Also we prove that the ${\mathbb{Z}}/r{\mathbb{Z}}$-Edge colored partition algebras are quasi-hereditary over a field of characteristic zero which contains a primitive $r^{th}$ root of unity. |
format | Article |
fullrecord | <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO201631347989439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO201631347989439</sourcerecordid><originalsourceid>FETCH-kisti_ndsl_JAKO2016313479894393</originalsourceid><addsrcrecordid>eNqNyk0LgjAcgPERBUn5HXbpKLhX3aGDiBEFFdRdZk4Z_XGwze-fhz5ApwcefiuU5FzwrCSUr1FCKBWZVIJsURqC7XLBWCGlVAk63lw02E24NgAzaI-f0c_vOPvlDrjpR4NrB86bHj-0jzbaBVcwms7rsEebQUMw6a87dDg1r_qcfWyItp36AO2lut5pTiQjjBeqVJwp9q_7AkBMN8M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Note on Cellular Structure of Edge Colored Partition Algebras</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kennedy, A. Joseph ; Muniasamy, G</creator><creatorcontrib>Kennedy, A. Joseph ; Muniasamy, G</creatorcontrib><description>In this paper, we study the cellular structure of the G-edge colored partition algebras, when G is a finite group. Further, we classified all the irreducible representations of these algebras using their cellular structure whenever G is a finite cyclic group. Also we prove that the ${\mathbb{Z}}/r{\mathbb{Z}}$-Edge colored partition algebras are quasi-hereditary over a field of characteristic zero which contains a primitive $r^{th}$ root of unity.</description><identifier>ISSN: 1225-6951</identifier><identifier>EISSN: 0454-8124</identifier><language>kor</language><ispartof>Kyungpook mathematical journal, 2016, Vol.56 (3), p.669-682</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4009</link.rule.ids></links><search><creatorcontrib>Kennedy, A. Joseph</creatorcontrib><creatorcontrib>Muniasamy, G</creatorcontrib><title>Note on Cellular Structure of Edge Colored Partition Algebras</title><title>Kyungpook mathematical journal</title><addtitle>Kyungpook mathematical journal</addtitle><description>In this paper, we study the cellular structure of the G-edge colored partition algebras, when G is a finite group. Further, we classified all the irreducible representations of these algebras using their cellular structure whenever G is a finite cyclic group. Also we prove that the ${\mathbb{Z}}/r{\mathbb{Z}}$-Edge colored partition algebras are quasi-hereditary over a field of characteristic zero which contains a primitive $r^{th}$ root of unity.</description><issn>1225-6951</issn><issn>0454-8124</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNqNyk0LgjAcgPERBUn5HXbpKLhX3aGDiBEFFdRdZk4Z_XGwze-fhz5ApwcefiuU5FzwrCSUr1FCKBWZVIJsURqC7XLBWCGlVAk63lw02E24NgAzaI-f0c_vOPvlDrjpR4NrB86bHj-0jzbaBVcwms7rsEebQUMw6a87dDg1r_qcfWyItp36AO2lut5pTiQjjBeqVJwp9q_7AkBMN8M</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Kennedy, A. Joseph</creator><creator>Muniasamy, G</creator><scope>JDI</scope></search><sort><creationdate>2016</creationdate><title>Note on Cellular Structure of Edge Colored Partition Algebras</title><author>Kennedy, A. Joseph ; Muniasamy, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kisti_ndsl_JAKO2016313479894393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kennedy, A. Joseph</creatorcontrib><creatorcontrib>Muniasamy, G</creatorcontrib><collection>KoreaScience</collection><jtitle>Kyungpook mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kennedy, A. Joseph</au><au>Muniasamy, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Note on Cellular Structure of Edge Colored Partition Algebras</atitle><jtitle>Kyungpook mathematical journal</jtitle><addtitle>Kyungpook mathematical journal</addtitle><date>2016</date><risdate>2016</risdate><volume>56</volume><issue>3</issue><spage>669</spage><epage>682</epage><pages>669-682</pages><issn>1225-6951</issn><eissn>0454-8124</eissn><abstract>In this paper, we study the cellular structure of the G-edge colored partition algebras, when G is a finite group. Further, we classified all the irreducible representations of these algebras using their cellular structure whenever G is a finite cyclic group. Also we prove that the ${\mathbb{Z}}/r{\mathbb{Z}}$-Edge colored partition algebras are quasi-hereditary over a field of characteristic zero which contains a primitive $r^{th}$ root of unity.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1225-6951 |
ispartof | Kyungpook mathematical journal, 2016, Vol.56 (3), p.669-682 |
issn | 1225-6951 0454-8124 |
language | kor |
recordid | cdi_kisti_ndsl_JAKO201631347989439 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Note on Cellular Structure of Edge Colored Partition Algebras |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T00%3A18%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Note%20on%20Cellular%20Structure%20of%20Edge%20Colored%20Partition%20Algebras&rft.jtitle=Kyungpook%20mathematical%20journal&rft.au=Kennedy,%20A.%20Joseph&rft.date=2016&rft.volume=56&rft.issue=3&rft.spage=669&rft.epage=682&rft.pages=669-682&rft.issn=1225-6951&rft.eissn=0454-8124&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO201631347989439%3C/kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |