Structure Jacobi Operators of Real Hypersurfaces with Constant Mean Curvature in a Complex Space Form

Let M be a real hypersurface with constant mean curvature in a complex space form $M_n(c),c{\neq}0$. In this paper, we prove that if the structure Jacobi operator $R_{\xi}= R({\cdot},{\xi}){\xi}$ with respect to the structure vector field ${\xi}$ is ${\phi}{\nabla}_{\xi}{\xi}$-parallel and $R_{\xi}$...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Kyungpook mathematical journal 2016, Vol.56 (4), p.1207-1235
Hauptverfasser: Hwang, Tae Yong, Ki, U-Hang, Kurihara, Hiroyuki
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let M be a real hypersurface with constant mean curvature in a complex space form $M_n(c),c{\neq}0$. In this paper, we prove that if the structure Jacobi operator $R_{\xi}= R({\cdot},{\xi}){\xi}$ with respect to the structure vector field ${\xi}$ is ${\phi}{\nabla}_{\xi}{\xi}$-parallel and $R_{\xi}$ commute with the structure tensor field ${\phi}$, then M is a homogeneous real hypersurface of Type A.
ISSN:1225-6951
0454-8124