MULTIPLE SOLUTIONS FOR EQUATIONS OF p(x)-LAPLACE TYPE WITH NONLINEAR NEUMANN BOUNDARY CONDITION

In this paper, we are concerned with the nonlinear elliptic equations of the p(x)-Laplace type $$\{\begin{array}{lll}-div(a(x,{\nabla}u))+{\mid}u{\mid}^{p(x)-2}u={\lambda}f(x,u) && in\;{\Omega}\\(a(x,{\nabla}u)\frac{{\partial}u}{{\partial}n}={\lambda}{\theta}g(x,u) && on\;{\partial}{...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taehan Suhakhoe hoebo 2016, Vol.53 (6), p.1805-1821
Hauptverfasser: Ki, Yun-Ho, Park, Kisoeb
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1821
container_issue 6
container_start_page 1805
container_title Taehan Suhakhoe hoebo
container_volume 53
creator Ki, Yun-Ho
Park, Kisoeb
description In this paper, we are concerned with the nonlinear elliptic equations of the p(x)-Laplace type $$\{\begin{array}{lll}-div(a(x,{\nabla}u))+{\mid}u{\mid}^{p(x)-2}u={\lambda}f(x,u) && in\;{\Omega}\\(a(x,{\nabla}u)\frac{{\partial}u}{{\partial}n}={\lambda}{\theta}g(x,u) && on\;{\partial}{\Omega},\end{array}$$ which is subject to nonlinear Neumann boundary condition. Here the function a(x, v) is of type${\mid}v{\mid}^{p(x)-2}v$ with continuous function $p:{\bar{\Omega}}{\rightarrow}(1,{\infty})$ and the functions f, g satisfy a $Carath{\acute{e}}odory$ condition. The main purpose of this paper is to establish the existence of at least three solutions for the above problem by applying three critical points theory due to Ricceri. Furthermore, we localize three critical points interval for the given problem as applications of the theorem introduced by Arcoya and Carmona.
format Article
fullrecord <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO201606776010201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO201606776010201</sourcerecordid><originalsourceid>FETCH-kisti_ndsl_JAKO2016067760102013</originalsourceid><addsrcrecordid>eNqNi8sKwjAQRbNQ8PkPsxF0UUhtTXUZa4rROFNrgnRVBBV8IEJc-Pkq-gGu7jlwbo01Qx6OgrGI4gZreX_mPB4NJ6LJqpUzVudGwYaMs5pwAxkVoNZOfo0yuPefg8DI3MhUgS1zBVtt54CERqOSBaByK4kIU3I4k0UJKeFMf_4dVj_urv7Q_W2b9TJl03lwOfnHqbrt_bVayCUNeSi4SBLBQ_7m6N_uBcz5OQA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MULTIPLE SOLUTIONS FOR EQUATIONS OF p(x)-LAPLACE TYPE WITH NONLINEAR NEUMANN BOUNDARY CONDITION</title><source>EZB Electronic Journals Library</source><creator>Ki, Yun-Ho ; Park, Kisoeb</creator><creatorcontrib>Ki, Yun-Ho ; Park, Kisoeb</creatorcontrib><description>In this paper, we are concerned with the nonlinear elliptic equations of the p(x)-Laplace type $$\{\begin{array}{lll}-div(a(x,{\nabla}u))+{\mid}u{\mid}^{p(x)-2}u={\lambda}f(x,u) &amp;&amp; in\;{\Omega}\\(a(x,{\nabla}u)\frac{{\partial}u}{{\partial}n}={\lambda}{\theta}g(x,u) &amp;&amp; on\;{\partial}{\Omega},\end{array}$$ which is subject to nonlinear Neumann boundary condition. Here the function a(x, v) is of type${\mid}v{\mid}^{p(x)-2}v$ with continuous function $p:{\bar{\Omega}}{\rightarrow}(1,{\infty})$ and the functions f, g satisfy a $Carath{\acute{e}}odory$ condition. The main purpose of this paper is to establish the existence of at least three solutions for the above problem by applying three critical points theory due to Ricceri. Furthermore, we localize three critical points interval for the given problem as applications of the theorem introduced by Arcoya and Carmona.</description><identifier>ISSN: 1015-8634</identifier><language>kor</language><ispartof>Taehan Suhakhoe hoebo, 2016, Vol.53 (6), p.1805-1821</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4014</link.rule.ids></links><search><creatorcontrib>Ki, Yun-Ho</creatorcontrib><creatorcontrib>Park, Kisoeb</creatorcontrib><title>MULTIPLE SOLUTIONS FOR EQUATIONS OF p(x)-LAPLACE TYPE WITH NONLINEAR NEUMANN BOUNDARY CONDITION</title><title>Taehan Suhakhoe hoebo</title><addtitle>대한수학회보</addtitle><description>In this paper, we are concerned with the nonlinear elliptic equations of the p(x)-Laplace type $$\{\begin{array}{lll}-div(a(x,{\nabla}u))+{\mid}u{\mid}^{p(x)-2}u={\lambda}f(x,u) &amp;&amp; in\;{\Omega}\\(a(x,{\nabla}u)\frac{{\partial}u}{{\partial}n}={\lambda}{\theta}g(x,u) &amp;&amp; on\;{\partial}{\Omega},\end{array}$$ which is subject to nonlinear Neumann boundary condition. Here the function a(x, v) is of type${\mid}v{\mid}^{p(x)-2}v$ with continuous function $p:{\bar{\Omega}}{\rightarrow}(1,{\infty})$ and the functions f, g satisfy a $Carath{\acute{e}}odory$ condition. The main purpose of this paper is to establish the existence of at least three solutions for the above problem by applying three critical points theory due to Ricceri. Furthermore, we localize three critical points interval for the given problem as applications of the theorem introduced by Arcoya and Carmona.</description><issn>1015-8634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNqNi8sKwjAQRbNQ8PkPsxF0UUhtTXUZa4rROFNrgnRVBBV8IEJc-Pkq-gGu7jlwbo01Qx6OgrGI4gZreX_mPB4NJ6LJqpUzVudGwYaMs5pwAxkVoNZOfo0yuPefg8DI3MhUgS1zBVtt54CERqOSBaByK4kIU3I4k0UJKeFMf_4dVj_urv7Q_W2b9TJl03lwOfnHqbrt_bVayCUNeSi4SBLBQ_7m6N_uBcz5OQA</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Ki, Yun-Ho</creator><creator>Park, Kisoeb</creator><scope>JDI</scope></search><sort><creationdate>2016</creationdate><title>MULTIPLE SOLUTIONS FOR EQUATIONS OF p(x)-LAPLACE TYPE WITH NONLINEAR NEUMANN BOUNDARY CONDITION</title><author>Ki, Yun-Ho ; Park, Kisoeb</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kisti_ndsl_JAKO2016067760102013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ki, Yun-Ho</creatorcontrib><creatorcontrib>Park, Kisoeb</creatorcontrib><collection>KoreaScience</collection><jtitle>Taehan Suhakhoe hoebo</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ki, Yun-Ho</au><au>Park, Kisoeb</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MULTIPLE SOLUTIONS FOR EQUATIONS OF p(x)-LAPLACE TYPE WITH NONLINEAR NEUMANN BOUNDARY CONDITION</atitle><jtitle>Taehan Suhakhoe hoebo</jtitle><addtitle>대한수학회보</addtitle><date>2016</date><risdate>2016</risdate><volume>53</volume><issue>6</issue><spage>1805</spage><epage>1821</epage><pages>1805-1821</pages><issn>1015-8634</issn><abstract>In this paper, we are concerned with the nonlinear elliptic equations of the p(x)-Laplace type $$\{\begin{array}{lll}-div(a(x,{\nabla}u))+{\mid}u{\mid}^{p(x)-2}u={\lambda}f(x,u) &amp;&amp; in\;{\Omega}\\(a(x,{\nabla}u)\frac{{\partial}u}{{\partial}n}={\lambda}{\theta}g(x,u) &amp;&amp; on\;{\partial}{\Omega},\end{array}$$ which is subject to nonlinear Neumann boundary condition. Here the function a(x, v) is of type${\mid}v{\mid}^{p(x)-2}v$ with continuous function $p:{\bar{\Omega}}{\rightarrow}(1,{\infty})$ and the functions f, g satisfy a $Carath{\acute{e}}odory$ condition. The main purpose of this paper is to establish the existence of at least three solutions for the above problem by applying three critical points theory due to Ricceri. Furthermore, we localize three critical points interval for the given problem as applications of the theorem introduced by Arcoya and Carmona.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1015-8634
ispartof Taehan Suhakhoe hoebo, 2016, Vol.53 (6), p.1805-1821
issn 1015-8634
language kor
recordid cdi_kisti_ndsl_JAKO201606776010201
source EZB Electronic Journals Library
title MULTIPLE SOLUTIONS FOR EQUATIONS OF p(x)-LAPLACE TYPE WITH NONLINEAR NEUMANN BOUNDARY CONDITION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A47%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MULTIPLE%20SOLUTIONS%20FOR%20EQUATIONS%20OF%20p(x)-LAPLACE%20TYPE%20WITH%20NONLINEAR%20NEUMANN%20BOUNDARY%20CONDITION&rft.jtitle=Taehan%20Suhakhoe%20hoebo&rft.au=Ki,%20Yun-Ho&rft.date=2016&rft.volume=53&rft.issue=6&rft.spage=1805&rft.epage=1821&rft.pages=1805-1821&rft.issn=1015-8634&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO201606776010201%3C/kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true