MULTIPLE SOLUTIONS FOR EQUATIONS OF p(x)-LAPLACE TYPE WITH NONLINEAR NEUMANN BOUNDARY CONDITION
In this paper, we are concerned with the nonlinear elliptic equations of the p(x)-Laplace type $$\{\begin{array}{lll}-div(a(x,{\nabla}u))+{\mid}u{\mid}^{p(x)-2}u={\lambda}f(x,u) && in\;{\Omega}\\(a(x,{\nabla}u)\frac{{\partial}u}{{\partial}n}={\lambda}{\theta}g(x,u) && on\;{\partial}{...
Gespeichert in:
Veröffentlicht in: | Taehan Suhakhoe hoebo 2016, Vol.53 (6), p.1805-1821 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1821 |
---|---|
container_issue | 6 |
container_start_page | 1805 |
container_title | Taehan Suhakhoe hoebo |
container_volume | 53 |
creator | Ki, Yun-Ho Park, Kisoeb |
description | In this paper, we are concerned with the nonlinear elliptic equations of the p(x)-Laplace type $$\{\begin{array}{lll}-div(a(x,{\nabla}u))+{\mid}u{\mid}^{p(x)-2}u={\lambda}f(x,u) && in\;{\Omega}\\(a(x,{\nabla}u)\frac{{\partial}u}{{\partial}n}={\lambda}{\theta}g(x,u) && on\;{\partial}{\Omega},\end{array}$$ which is subject to nonlinear Neumann boundary condition. Here the function a(x, v) is of type${\mid}v{\mid}^{p(x)-2}v$ with continuous function $p:{\bar{\Omega}}{\rightarrow}(1,{\infty})$ and the functions f, g satisfy a $Carath{\acute{e}}odory$ condition. The main purpose of this paper is to establish the existence of at least three solutions for the above problem by applying three critical points theory due to Ricceri. Furthermore, we localize three critical points interval for the given problem as applications of the theorem introduced by Arcoya and Carmona. |
format | Article |
fullrecord | <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO201606776010201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO201606776010201</sourcerecordid><originalsourceid>FETCH-kisti_ndsl_JAKO2016067760102013</originalsourceid><addsrcrecordid>eNqNi8sKwjAQRbNQ8PkPsxF0UUhtTXUZa4rROFNrgnRVBBV8IEJc-Pkq-gGu7jlwbo01Qx6OgrGI4gZreX_mPB4NJ6LJqpUzVudGwYaMs5pwAxkVoNZOfo0yuPefg8DI3MhUgS1zBVtt54CERqOSBaByK4kIU3I4k0UJKeFMf_4dVj_urv7Q_W2b9TJl03lwOfnHqbrt_bVayCUNeSi4SBLBQ_7m6N_uBcz5OQA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MULTIPLE SOLUTIONS FOR EQUATIONS OF p(x)-LAPLACE TYPE WITH NONLINEAR NEUMANN BOUNDARY CONDITION</title><source>EZB Electronic Journals Library</source><creator>Ki, Yun-Ho ; Park, Kisoeb</creator><creatorcontrib>Ki, Yun-Ho ; Park, Kisoeb</creatorcontrib><description>In this paper, we are concerned with the nonlinear elliptic equations of the p(x)-Laplace type $$\{\begin{array}{lll}-div(a(x,{\nabla}u))+{\mid}u{\mid}^{p(x)-2}u={\lambda}f(x,u) && in\;{\Omega}\\(a(x,{\nabla}u)\frac{{\partial}u}{{\partial}n}={\lambda}{\theta}g(x,u) && on\;{\partial}{\Omega},\end{array}$$ which is subject to nonlinear Neumann boundary condition. Here the function a(x, v) is of type${\mid}v{\mid}^{p(x)-2}v$ with continuous function $p:{\bar{\Omega}}{\rightarrow}(1,{\infty})$ and the functions f, g satisfy a $Carath{\acute{e}}odory$ condition. The main purpose of this paper is to establish the existence of at least three solutions for the above problem by applying three critical points theory due to Ricceri. Furthermore, we localize three critical points interval for the given problem as applications of the theorem introduced by Arcoya and Carmona.</description><identifier>ISSN: 1015-8634</identifier><language>kor</language><ispartof>Taehan Suhakhoe hoebo, 2016, Vol.53 (6), p.1805-1821</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4014</link.rule.ids></links><search><creatorcontrib>Ki, Yun-Ho</creatorcontrib><creatorcontrib>Park, Kisoeb</creatorcontrib><title>MULTIPLE SOLUTIONS FOR EQUATIONS OF p(x)-LAPLACE TYPE WITH NONLINEAR NEUMANN BOUNDARY CONDITION</title><title>Taehan Suhakhoe hoebo</title><addtitle>대한수학회보</addtitle><description>In this paper, we are concerned with the nonlinear elliptic equations of the p(x)-Laplace type $$\{\begin{array}{lll}-div(a(x,{\nabla}u))+{\mid}u{\mid}^{p(x)-2}u={\lambda}f(x,u) && in\;{\Omega}\\(a(x,{\nabla}u)\frac{{\partial}u}{{\partial}n}={\lambda}{\theta}g(x,u) && on\;{\partial}{\Omega},\end{array}$$ which is subject to nonlinear Neumann boundary condition. Here the function a(x, v) is of type${\mid}v{\mid}^{p(x)-2}v$ with continuous function $p:{\bar{\Omega}}{\rightarrow}(1,{\infty})$ and the functions f, g satisfy a $Carath{\acute{e}}odory$ condition. The main purpose of this paper is to establish the existence of at least three solutions for the above problem by applying three critical points theory due to Ricceri. Furthermore, we localize three critical points interval for the given problem as applications of the theorem introduced by Arcoya and Carmona.</description><issn>1015-8634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNqNi8sKwjAQRbNQ8PkPsxF0UUhtTXUZa4rROFNrgnRVBBV8IEJc-Pkq-gGu7jlwbo01Qx6OgrGI4gZreX_mPB4NJ6LJqpUzVudGwYaMs5pwAxkVoNZOfo0yuPefg8DI3MhUgS1zBVtt54CERqOSBaByK4kIU3I4k0UJKeFMf_4dVj_urv7Q_W2b9TJl03lwOfnHqbrt_bVayCUNeSi4SBLBQ_7m6N_uBcz5OQA</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Ki, Yun-Ho</creator><creator>Park, Kisoeb</creator><scope>JDI</scope></search><sort><creationdate>2016</creationdate><title>MULTIPLE SOLUTIONS FOR EQUATIONS OF p(x)-LAPLACE TYPE WITH NONLINEAR NEUMANN BOUNDARY CONDITION</title><author>Ki, Yun-Ho ; Park, Kisoeb</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kisti_ndsl_JAKO2016067760102013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ki, Yun-Ho</creatorcontrib><creatorcontrib>Park, Kisoeb</creatorcontrib><collection>KoreaScience</collection><jtitle>Taehan Suhakhoe hoebo</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ki, Yun-Ho</au><au>Park, Kisoeb</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MULTIPLE SOLUTIONS FOR EQUATIONS OF p(x)-LAPLACE TYPE WITH NONLINEAR NEUMANN BOUNDARY CONDITION</atitle><jtitle>Taehan Suhakhoe hoebo</jtitle><addtitle>대한수학회보</addtitle><date>2016</date><risdate>2016</risdate><volume>53</volume><issue>6</issue><spage>1805</spage><epage>1821</epage><pages>1805-1821</pages><issn>1015-8634</issn><abstract>In this paper, we are concerned with the nonlinear elliptic equations of the p(x)-Laplace type $$\{\begin{array}{lll}-div(a(x,{\nabla}u))+{\mid}u{\mid}^{p(x)-2}u={\lambda}f(x,u) && in\;{\Omega}\\(a(x,{\nabla}u)\frac{{\partial}u}{{\partial}n}={\lambda}{\theta}g(x,u) && on\;{\partial}{\Omega},\end{array}$$ which is subject to nonlinear Neumann boundary condition. Here the function a(x, v) is of type${\mid}v{\mid}^{p(x)-2}v$ with continuous function $p:{\bar{\Omega}}{\rightarrow}(1,{\infty})$ and the functions f, g satisfy a $Carath{\acute{e}}odory$ condition. The main purpose of this paper is to establish the existence of at least three solutions for the above problem by applying three critical points theory due to Ricceri. Furthermore, we localize three critical points interval for the given problem as applications of the theorem introduced by Arcoya and Carmona.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1015-8634 |
ispartof | Taehan Suhakhoe hoebo, 2016, Vol.53 (6), p.1805-1821 |
issn | 1015-8634 |
language | kor |
recordid | cdi_kisti_ndsl_JAKO201606776010201 |
source | EZB Electronic Journals Library |
title | MULTIPLE SOLUTIONS FOR EQUATIONS OF p(x)-LAPLACE TYPE WITH NONLINEAR NEUMANN BOUNDARY CONDITION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A47%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MULTIPLE%20SOLUTIONS%20FOR%20EQUATIONS%20OF%20p(x)-LAPLACE%20TYPE%20WITH%20NONLINEAR%20NEUMANN%20BOUNDARY%20CONDITION&rft.jtitle=Taehan%20Suhakhoe%20hoebo&rft.au=Ki,%20Yun-Ho&rft.date=2016&rft.volume=53&rft.issue=6&rft.spage=1805&rft.epage=1821&rft.pages=1805-1821&rft.issn=1015-8634&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO201606776010201%3C/kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |