STABILITY OF (α, β, γ)-DERIVATIONS ON LIE C -ALGEBRA ASSOCIATED TO A PEXIDERIZED QUADRATIC TYPE FUNCTIONAL EQUATION

In this article, we considered the stability of the following (${\alpha}$, ${\beta}$, ${\gamma}$)-derivation $${\alpha}D[x,y]={\beta}[D(x),y]+{\gamma}[x,D(y)]$$ and homomorphisms associated to the quadratic type functional equation $$f(kx+y)+f(kx+{\sigma}(y))=2kg(x)+2g(y),\;x,y{\in}A$$, where ${\sig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications of the Korean Mathematical Society 2016, Vol.31 (1), p.101-113
Hauptverfasser: Eghbali, Nasrin, Hazrati, Somayeh
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113
container_issue 1
container_start_page 101
container_title Communications of the Korean Mathematical Society
container_volume 31
creator Eghbali, Nasrin
Hazrati, Somayeh
description In this article, we considered the stability of the following (${\alpha}$, ${\beta}$, ${\gamma}$)-derivation $${\alpha}D[x,y]={\beta}[D(x),y]+{\gamma}[x,D(y)]$$ and homomorphisms associated to the quadratic type functional equation $$f(kx+y)+f(kx+{\sigma}(y))=2kg(x)+2g(y),\;x,y{\in}A$$, where ${\sigma}$ is an involution of the Lie $C^*$-algebra A and k is a fixed positive integer. The Hyers-Ulam stability on unbounded domains is also studied. Applications of the results for the asymptotic behavior of the generalized quadratic functional equation are provided.
format Article
fullrecord <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO201606050646549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO201606050646549</sourcerecordid><originalsourceid>FETCH-kisti_ndsl_JAKO2016060506465493</originalsourceid><addsrcrecordid>eNqNTN1qwjAYDbKBZfoO343gYIE0adN5-Zmmmlka16ai3shEhTLZTcbea_oePpMt7AF2cTiH89cjAeciooLx6IEEIecxDRMp-mTofbNnQvLkNWYsID-Vw6nJjduAzWB8-32B26XF9ZmmujQrdMYWFdgCcqNBAcV8pqclAlaVVQadTsFZQFjqtekW29Z4rzEt26UCt1lqyOpCdTeYg26jTg7I4-nj7I_DP34io0w7Naefjf9udl8Hf9694cJyFkomWcxkJONoIv7buwPaO0NW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>STABILITY OF (α, β, γ)-DERIVATIONS ON LIE C -ALGEBRA ASSOCIATED TO A PEXIDERIZED QUADRATIC TYPE FUNCTIONAL EQUATION</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Eghbali, Nasrin ; Hazrati, Somayeh</creator><creatorcontrib>Eghbali, Nasrin ; Hazrati, Somayeh</creatorcontrib><description>In this article, we considered the stability of the following (${\alpha}$, ${\beta}$, ${\gamma}$)-derivation $${\alpha}D[x,y]={\beta}[D(x),y]+{\gamma}[x,D(y)]$$ and homomorphisms associated to the quadratic type functional equation $$f(kx+y)+f(kx+{\sigma}(y))=2kg(x)+2g(y),\;x,y{\in}A$$, where ${\sigma}$ is an involution of the Lie $C^*$-algebra A and k is a fixed positive integer. The Hyers-Ulam stability on unbounded domains is also studied. Applications of the results for the asymptotic behavior of the generalized quadratic functional equation are provided.</description><identifier>ISSN: 1225-1763</identifier><identifier>EISSN: 2234-3024</identifier><language>kor</language><ispartof>Communications of the Korean Mathematical Society, 2016, Vol.31 (1), p.101-113</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4009</link.rule.ids></links><search><creatorcontrib>Eghbali, Nasrin</creatorcontrib><creatorcontrib>Hazrati, Somayeh</creatorcontrib><title>STABILITY OF (α, β, γ)-DERIVATIONS ON LIE C -ALGEBRA ASSOCIATED TO A PEXIDERIZED QUADRATIC TYPE FUNCTIONAL EQUATION</title><title>Communications of the Korean Mathematical Society</title><addtitle>대한수학회논문집</addtitle><description>In this article, we considered the stability of the following (${\alpha}$, ${\beta}$, ${\gamma}$)-derivation $${\alpha}D[x,y]={\beta}[D(x),y]+{\gamma}[x,D(y)]$$ and homomorphisms associated to the quadratic type functional equation $$f(kx+y)+f(kx+{\sigma}(y))=2kg(x)+2g(y),\;x,y{\in}A$$, where ${\sigma}$ is an involution of the Lie $C^*$-algebra A and k is a fixed positive integer. The Hyers-Ulam stability on unbounded domains is also studied. Applications of the results for the asymptotic behavior of the generalized quadratic functional equation are provided.</description><issn>1225-1763</issn><issn>2234-3024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNqNTN1qwjAYDbKBZfoO343gYIE0adN5-Zmmmlka16ai3shEhTLZTcbea_oePpMt7AF2cTiH89cjAeciooLx6IEEIecxDRMp-mTofbNnQvLkNWYsID-Vw6nJjduAzWB8-32B26XF9ZmmujQrdMYWFdgCcqNBAcV8pqclAlaVVQadTsFZQFjqtekW29Z4rzEt26UCt1lqyOpCdTeYg26jTg7I4-nj7I_DP34io0w7Naefjf9udl8Hf9694cJyFkomWcxkJONoIv7buwPaO0NW</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Eghbali, Nasrin</creator><creator>Hazrati, Somayeh</creator><scope>JDI</scope></search><sort><creationdate>2016</creationdate><title>STABILITY OF (α, β, γ)-DERIVATIONS ON LIE C -ALGEBRA ASSOCIATED TO A PEXIDERIZED QUADRATIC TYPE FUNCTIONAL EQUATION</title><author>Eghbali, Nasrin ; Hazrati, Somayeh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kisti_ndsl_JAKO2016060506465493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eghbali, Nasrin</creatorcontrib><creatorcontrib>Hazrati, Somayeh</creatorcontrib><collection>KoreaScience</collection><jtitle>Communications of the Korean Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eghbali, Nasrin</au><au>Hazrati, Somayeh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>STABILITY OF (α, β, γ)-DERIVATIONS ON LIE C -ALGEBRA ASSOCIATED TO A PEXIDERIZED QUADRATIC TYPE FUNCTIONAL EQUATION</atitle><jtitle>Communications of the Korean Mathematical Society</jtitle><addtitle>대한수학회논문집</addtitle><date>2016</date><risdate>2016</risdate><volume>31</volume><issue>1</issue><spage>101</spage><epage>113</epage><pages>101-113</pages><issn>1225-1763</issn><eissn>2234-3024</eissn><abstract>In this article, we considered the stability of the following (${\alpha}$, ${\beta}$, ${\gamma}$)-derivation $${\alpha}D[x,y]={\beta}[D(x),y]+{\gamma}[x,D(y)]$$ and homomorphisms associated to the quadratic type functional equation $$f(kx+y)+f(kx+{\sigma}(y))=2kg(x)+2g(y),\;x,y{\in}A$$, where ${\sigma}$ is an involution of the Lie $C^*$-algebra A and k is a fixed positive integer. The Hyers-Ulam stability on unbounded domains is also studied. Applications of the results for the asymptotic behavior of the generalized quadratic functional equation are provided.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1225-1763
ispartof Communications of the Korean Mathematical Society, 2016, Vol.31 (1), p.101-113
issn 1225-1763
2234-3024
language kor
recordid cdi_kisti_ndsl_JAKO201606050646549
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title STABILITY OF (α, β, γ)-DERIVATIONS ON LIE C -ALGEBRA ASSOCIATED TO A PEXIDERIZED QUADRATIC TYPE FUNCTIONAL EQUATION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A12%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=STABILITY%20OF%20(%CE%B1,%20%CE%B2,%20%CE%B3)-DERIVATIONS%20ON%20LIE%20C%20-ALGEBRA%20ASSOCIATED%20TO%20A%20PEXIDERIZED%20QUADRATIC%20TYPE%20FUNCTIONAL%20EQUATION&rft.jtitle=Communications%20of%20the%20Korean%20Mathematical%20Society&rft.au=Eghbali,%20Nasrin&rft.date=2016&rft.volume=31&rft.issue=1&rft.spage=101&rft.epage=113&rft.pages=101-113&rft.issn=1225-1763&rft.eissn=2234-3024&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO201606050646549%3C/kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true