Development of a Bioconversion System Using Saccharomyces cerevisiae Reductase YOR120W and Bacillus subtilis Glucose Dehydrogenase for Chiral Alcohol Synthesis
Reductases convert some achiral ketone compounds into chiral alcohols, which are important materials for the synthesis of chiral drugs. The Saccharomyces cerevisiae reductase YOR120W converts ethyl-4-chloro-3-oxobutanoate (ECOB) enantioselectively into (R)-ethyl-4-chloro-3- hydroxybutanoate ((R)-ECH...
Gespeichert in:
Veröffentlicht in: | Journal of microbiology and biotechnology 2013-10, Vol.23 (10), p.1395-1402 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1402 |
---|---|
container_issue | 10 |
container_start_page | 1395 |
container_title | Journal of microbiology and biotechnology |
container_volume | 23 |
creator | Yoon, Shin Ah Kim, Hyung Kwoun |
description | Reductases convert some achiral ketone compounds into chiral alcohols, which are important materials for the synthesis of chiral drugs. The Saccharomyces cerevisiae reductase YOR120W converts ethyl-4-chloro-3-oxobutanoate (ECOB) enantioselectively into (R)-ethyl-4-chloro-3- hydroxybutanoate ((R)-ECHB), an intermediate of a pharmaceutical. As YOR120W requires NADPH as a cofactor for the reduction reaction, a cofactor recycling system using Bacillus subtilis glucose dehydrogenase was employed. Using this coupling reaction system, 100 mM ECOB was converted to (R)-ECHB. A homology modeling and site-directed mutagenesis experiment were performed to determine the NADPH-binding site of YOR120W. Four residues (Q29, K264, N267, and R270) were suggested by homology and docking modeling to interact directly with 2`-phosphate of NADPH. Among them, two positively charged residues (K264 and R270) were experimentally demonstrated to be necessary for NADPH 2`-phosphate binding. A mutant enzyme (Q29E) showed an enhanced enantiomeric excess value compared with that of the wild-type enzyme. |
format | Article |
fullrecord | <record><control><sourceid>kiss_kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO201313561593036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><kiss_id>3169443</kiss_id><sourcerecordid>3169443</sourcerecordid><originalsourceid>FETCH-LOGICAL-k506-35f9d9825f032401f747858f3c47d16aff5bec934b30ec6e96487ed0f0e2a753</originalsourceid><addsrcrecordid>eNo9j8tOwzAURCMEEqXwBWy8YRnJjmM7WfYB5VGpUgtCrCLXuW5M3bjKTSrla_hVgkCsZhZnZjRn0YgpnsVZppLzwVOmYpUl4jK6QvykVLIkk6Poaw4n8OF4gLolwRJNpi6YUJ-gQRdqsumxhQN5Q1fvyEYbU-kmHHoDSAw0cHLoNJA1lJ1pNQL5WK1ZQt-Jrksy1cZ53yHBbts675AsfGfCQM2h6ssm7KD-ydjQkFnlGu3JxJtQBT_M1m0F6PA6urDaI9z86TjaPNy_zh7j5WrxNJss472gMubC5mU-vLOUJyllVqUqE5nlJlUlk9pasQWT83TLKRgJuUwzBSW1FBKtBB9Hd7-te4etK-oSffE8eVkllHHGhWQi55TLgbv957A4Nu6gm77gTOZpyvk39xVwWg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Development of a Bioconversion System Using Saccharomyces cerevisiae Reductase YOR120W and Bacillus subtilis Glucose Dehydrogenase for Chiral Alcohol Synthesis</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yoon, Shin Ah ; Kim, Hyung Kwoun</creator><creatorcontrib>Yoon, Shin Ah ; Kim, Hyung Kwoun</creatorcontrib><description>Reductases convert some achiral ketone compounds into chiral alcohols, which are important materials for the synthesis of chiral drugs. The Saccharomyces cerevisiae reductase YOR120W converts ethyl-4-chloro-3-oxobutanoate (ECOB) enantioselectively into (R)-ethyl-4-chloro-3- hydroxybutanoate ((R)-ECHB), an intermediate of a pharmaceutical. As YOR120W requires NADPH as a cofactor for the reduction reaction, a cofactor recycling system using Bacillus subtilis glucose dehydrogenase was employed. Using this coupling reaction system, 100 mM ECOB was converted to (R)-ECHB. A homology modeling and site-directed mutagenesis experiment were performed to determine the NADPH-binding site of YOR120W. Four residues (Q29, K264, N267, and R270) were suggested by homology and docking modeling to interact directly with 2`-phosphate of NADPH. Among them, two positively charged residues (K264 and R270) were experimentally demonstrated to be necessary for NADPH 2`-phosphate binding. A mutant enzyme (Q29E) showed an enhanced enantiomeric excess value compared with that of the wild-type enzyme.</description><identifier>ISSN: 1017-7825</identifier><identifier>EISSN: 1738-8872</identifier><language>kor</language><publisher>한국미생물생명공학회</publisher><subject>chiral compound ; coupling reaction ; NADPH regeneration ; Reductase</subject><ispartof>Journal of microbiology and biotechnology, 2013-10, Vol.23 (10), p.1395-1402</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids></links><search><creatorcontrib>Yoon, Shin Ah</creatorcontrib><creatorcontrib>Kim, Hyung Kwoun</creatorcontrib><title>Development of a Bioconversion System Using Saccharomyces cerevisiae Reductase YOR120W and Bacillus subtilis Glucose Dehydrogenase for Chiral Alcohol Synthesis</title><title>Journal of microbiology and biotechnology</title><addtitle>Journal of Microbiology and Biotechnology</addtitle><description>Reductases convert some achiral ketone compounds into chiral alcohols, which are important materials for the synthesis of chiral drugs. The Saccharomyces cerevisiae reductase YOR120W converts ethyl-4-chloro-3-oxobutanoate (ECOB) enantioselectively into (R)-ethyl-4-chloro-3- hydroxybutanoate ((R)-ECHB), an intermediate of a pharmaceutical. As YOR120W requires NADPH as a cofactor for the reduction reaction, a cofactor recycling system using Bacillus subtilis glucose dehydrogenase was employed. Using this coupling reaction system, 100 mM ECOB was converted to (R)-ECHB. A homology modeling and site-directed mutagenesis experiment were performed to determine the NADPH-binding site of YOR120W. Four residues (Q29, K264, N267, and R270) were suggested by homology and docking modeling to interact directly with 2`-phosphate of NADPH. Among them, two positively charged residues (K264 and R270) were experimentally demonstrated to be necessary for NADPH 2`-phosphate binding. A mutant enzyme (Q29E) showed an enhanced enantiomeric excess value compared with that of the wild-type enzyme.</description><subject>chiral compound</subject><subject>coupling reaction</subject><subject>NADPH regeneration</subject><subject>Reductase</subject><issn>1017-7825</issn><issn>1738-8872</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNo9j8tOwzAURCMEEqXwBWy8YRnJjmM7WfYB5VGpUgtCrCLXuW5M3bjKTSrla_hVgkCsZhZnZjRn0YgpnsVZppLzwVOmYpUl4jK6QvykVLIkk6Poaw4n8OF4gLolwRJNpi6YUJ-gQRdqsumxhQN5Q1fvyEYbU-kmHHoDSAw0cHLoNJA1lJ1pNQL5WK1ZQt-Jrksy1cZ53yHBbts675AsfGfCQM2h6ssm7KD-ydjQkFnlGu3JxJtQBT_M1m0F6PA6urDaI9z86TjaPNy_zh7j5WrxNJss472gMubC5mU-vLOUJyllVqUqE5nlJlUlk9pasQWT83TLKRgJuUwzBSW1FBKtBB9Hd7-te4etK-oSffE8eVkllHHGhWQi55TLgbv957A4Nu6gm77gTOZpyvk39xVwWg</recordid><startdate>20131030</startdate><enddate>20131030</enddate><creator>Yoon, Shin Ah</creator><creator>Kim, Hyung Kwoun</creator><general>한국미생물생명공학회</general><scope>HZB</scope><scope>Q5X</scope><scope>JDI</scope></search><sort><creationdate>20131030</creationdate><title>Development of a Bioconversion System Using Saccharomyces cerevisiae Reductase YOR120W and Bacillus subtilis Glucose Dehydrogenase for Chiral Alcohol Synthesis</title><author>Yoon, Shin Ah ; Kim, Hyung Kwoun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-k506-35f9d9825f032401f747858f3c47d16aff5bec934b30ec6e96487ed0f0e2a753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2013</creationdate><topic>chiral compound</topic><topic>coupling reaction</topic><topic>NADPH regeneration</topic><topic>Reductase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoon, Shin Ah</creatorcontrib><creatorcontrib>Kim, Hyung Kwoun</creatorcontrib><collection>Korean Studies Information Service System (KISS)</collection><collection>Korean Studies Information Service System (KISS) B-Type</collection><collection>KoreaScience</collection><jtitle>Journal of microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoon, Shin Ah</au><au>Kim, Hyung Kwoun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a Bioconversion System Using Saccharomyces cerevisiae Reductase YOR120W and Bacillus subtilis Glucose Dehydrogenase for Chiral Alcohol Synthesis</atitle><jtitle>Journal of microbiology and biotechnology</jtitle><addtitle>Journal of Microbiology and Biotechnology</addtitle><date>2013-10-30</date><risdate>2013</risdate><volume>23</volume><issue>10</issue><spage>1395</spage><epage>1402</epage><pages>1395-1402</pages><issn>1017-7825</issn><eissn>1738-8872</eissn><abstract>Reductases convert some achiral ketone compounds into chiral alcohols, which are important materials for the synthesis of chiral drugs. The Saccharomyces cerevisiae reductase YOR120W converts ethyl-4-chloro-3-oxobutanoate (ECOB) enantioselectively into (R)-ethyl-4-chloro-3- hydroxybutanoate ((R)-ECHB), an intermediate of a pharmaceutical. As YOR120W requires NADPH as a cofactor for the reduction reaction, a cofactor recycling system using Bacillus subtilis glucose dehydrogenase was employed. Using this coupling reaction system, 100 mM ECOB was converted to (R)-ECHB. A homology modeling and site-directed mutagenesis experiment were performed to determine the NADPH-binding site of YOR120W. Four residues (Q29, K264, N267, and R270) were suggested by homology and docking modeling to interact directly with 2`-phosphate of NADPH. Among them, two positively charged residues (K264 and R270) were experimentally demonstrated to be necessary for NADPH 2`-phosphate binding. A mutant enzyme (Q29E) showed an enhanced enantiomeric excess value compared with that of the wild-type enzyme.</abstract><pub>한국미생물생명공학회</pub><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1017-7825 |
ispartof | Journal of microbiology and biotechnology, 2013-10, Vol.23 (10), p.1395-1402 |
issn | 1017-7825 1738-8872 |
language | kor |
recordid | cdi_kisti_ndsl_JAKO201313561593036 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | chiral compound coupling reaction NADPH regeneration Reductase |
title | Development of a Bioconversion System Using Saccharomyces cerevisiae Reductase YOR120W and Bacillus subtilis Glucose Dehydrogenase for Chiral Alcohol Synthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A52%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kiss_kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20Bioconversion%20System%20Using%20Saccharomyces%20cerevisiae%20Reductase%20YOR120W%20and%20Bacillus%20subtilis%20Glucose%20Dehydrogenase%20for%20Chiral%20Alcohol%20Synthesis&rft.jtitle=Journal%20of%20microbiology%20and%20biotechnology&rft.au=Yoon,%20Shin%20Ah&rft.date=2013-10-30&rft.volume=23&rft.issue=10&rft.spage=1395&rft.epage=1402&rft.pages=1395-1402&rft.issn=1017-7825&rft.eissn=1738-8872&rft_id=info:doi/&rft_dat=%3Ckiss_kisti%3E3169443%3C/kiss_kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_kiss_id=3169443&rfr_iscdi=true |