Photosynthetic Characteristics of Resistance and Susceptible Lines to High Temperature Injury in Panax ginseng Meyer

In this study, photosynthetic parameters such as the net photosynthesis rate, stomatal conductance, intercellular $CO_2$ concentration, and transpiration rate were examined in selected ginseng varieties and/or lines that are resistant (Yunpoong, HTIR 1, HTIR 2, and HTIR 3) and susceptible (Chunpoong...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ginseng research 2012, Vol.36 (4), p.461-468
Hauptverfasser: Lee, Joon-Soo, Lee, Dong-Yun, Lee, Jang-Ho, Ahn, In-Ok, In, Jun-Guy
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 468
container_issue 4
container_start_page 461
container_title Journal of ginseng research
container_volume 36
creator Lee, Joon-Soo
Lee, Dong-Yun
Lee, Jang-Ho
Ahn, In-Ok
In, Jun-Guy
description In this study, photosynthetic parameters such as the net photosynthesis rate, stomatal conductance, intercellular $CO_2$ concentration, and transpiration rate were examined in selected ginseng varieties and/or lines that are resistant (Yunpoong, HTIR 1, HTIR 2, and HTIR 3) and susceptible (Chunpoong) to high temperature injury (HTI). The net photosynthesis rate increased with the increase in the light intensity in all the HTI-resistant and -susceptible ginseng lines with a light saturation point of $200\;{\mu}mol\;m^{-2}s^{-1}$, except for Yunpoong that had a light saturation point of $400\;{\mu}mol\;m^{-2}s^{-1}$. At the light saturation point, the net photosynthesis rate in July was highest in HTIR 3, at $4.2\;{\mu}mol\;CO_2\;m^{-2}s^{-1}$, and was lowest in Yunpoong, HTIR 1, Chunpoong, and HTIR 2, in that order, at 1.9 to $3.7\;{\mu}mol\;CO_2\;m^{-2}s^{-1}$. The net photosynthesis rate in August was highest in Yunpoong at $5.9\;{\mu}mol\;CO_2\;m^{-2}s^{-1}$, and lowest in HTIR 1 and HTIR 3 ($4.5\;{\mu}mol\;CO_2\;m^{-2}s^{-1}$) and in other lines, in that order, at 2.8 to $2.9\;{\mu}mol\;CO_2\;m^{-2}s^{-1}$. The stomatal conductance in July was highest in HTIR 3 (0.055 mol $H_2O\;m^{-2}s^{-1}$) and Yunpoong, Chunpoong, HTIR 1, and HTIR 2 were 0.038, 0.037, 0.031, and 0.017 in that orders. In August, meanwhile, HTIR 1 showed the highest as 0.075, and followed by HTIR 3, Chungpoong, and HTIR 2 with 0.070, 0.047, and 0.023, respectively. The intercellular $CO_2$ concentration at the light saturation point in July and August was much lower in HTIR 2 at 139 and $185\;{\mu}mol\;mol^{-1}$ than in the other ginseng lines at 217 to 257 and 274 to $287\;{\mu}mol\;mol^{-1}$, respectively. The transpiration rate in July and August was higher in the HTI-resistant lines of Yunpoong, HTIR 1, and/or HTIR 3 at 0.83 to 1.03 and 1.67 to 2.10 mol $H_2O\;m^{-2}s^{-1}$ than in the other ginseng lines at 0.27 to 0.79 mol $H_2O\;m^{-2}s^{-1}$ and 0.51-1.65 mol $H_2O\;m^{-2}s^{-1}$, respectively. Conclusively, all the photosynthetic parameters that were examined in this study were generally higher in the HTI-resistant ginseng lines than in the HTI-susceptible lines, except for HTIR 2, and were much higher in August than in July, especially in the resistant ginseng lines. All these results can be used to provide basic information for the selection of HTI-resistant ginseng lines and the application of cultural practices that are efficient for ginseng growth, based on the photosynt
format Article
fullrecord <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO201229664766692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO201229664766692</sourcerecordid><originalsourceid>FETCH-kisti_ndsl_JAKO2012296647666923</originalsourceid><addsrcrecordid>eNqNjsFqwkAURQepYKj-w9u4DMTJc2KWIi22VRR1L2N8JtOmLzJvAs3fN0I_oKvDgQP3DlSkkzyNMcfsSUUzrU28wHk6UhMRd0kQM0ScZZEK-6oJjXQcKgqugFVlvS0CeSe9CjQ3OJD0YrkgsHyFYysF3YO71AQbxyQQGli7soITfd_J29B6gjf-bH0HjmFv2f5A6ViIS9hSR36shjdbC03--Kymry-n1Tr-eqye-Sr1-X35sdNJ_zw3BjNjTK7T_3a_ZuxNGQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Photosynthetic Characteristics of Resistance and Susceptible Lines to High Temperature Injury in Panax ginseng Meyer</title><source>PubMed Central Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Lee, Joon-Soo ; Lee, Dong-Yun ; Lee, Jang-Ho ; Ahn, In-Ok ; In, Jun-Guy</creator><creatorcontrib>Lee, Joon-Soo ; Lee, Dong-Yun ; Lee, Jang-Ho ; Ahn, In-Ok ; In, Jun-Guy</creatorcontrib><description>In this study, photosynthetic parameters such as the net photosynthesis rate, stomatal conductance, intercellular $CO_2$ concentration, and transpiration rate were examined in selected ginseng varieties and/or lines that are resistant (Yunpoong, HTIR 1, HTIR 2, and HTIR 3) and susceptible (Chunpoong) to high temperature injury (HTI). The net photosynthesis rate increased with the increase in the light intensity in all the HTI-resistant and -susceptible ginseng lines with a light saturation point of $200\;{\mu}mol\;m^{-2}s^{-1}$, except for Yunpoong that had a light saturation point of $400\;{\mu}mol\;m^{-2}s^{-1}$. At the light saturation point, the net photosynthesis rate in July was highest in HTIR 3, at $4.2\;{\mu}mol\;CO_2\;m^{-2}s^{-1}$, and was lowest in Yunpoong, HTIR 1, Chunpoong, and HTIR 2, in that order, at 1.9 to $3.7\;{\mu}mol\;CO_2\;m^{-2}s^{-1}$. The net photosynthesis rate in August was highest in Yunpoong at $5.9\;{\mu}mol\;CO_2\;m^{-2}s^{-1}$, and lowest in HTIR 1 and HTIR 3 ($4.5\;{\mu}mol\;CO_2\;m^{-2}s^{-1}$) and in other lines, in that order, at 2.8 to $2.9\;{\mu}mol\;CO_2\;m^{-2}s^{-1}$. The stomatal conductance in July was highest in HTIR 3 (0.055 mol $H_2O\;m^{-2}s^{-1}$) and Yunpoong, Chunpoong, HTIR 1, and HTIR 2 were 0.038, 0.037, 0.031, and 0.017 in that orders. In August, meanwhile, HTIR 1 showed the highest as 0.075, and followed by HTIR 3, Chungpoong, and HTIR 2 with 0.070, 0.047, and 0.023, respectively. The intercellular $CO_2$ concentration at the light saturation point in July and August was much lower in HTIR 2 at 139 and $185\;{\mu}mol\;mol^{-1}$ than in the other ginseng lines at 217 to 257 and 274 to $287\;{\mu}mol\;mol^{-1}$, respectively. The transpiration rate in July and August was higher in the HTI-resistant lines of Yunpoong, HTIR 1, and/or HTIR 3 at 0.83 to 1.03 and 1.67 to 2.10 mol $H_2O\;m^{-2}s^{-1}$ than in the other ginseng lines at 0.27 to 0.79 mol $H_2O\;m^{-2}s^{-1}$ and 0.51-1.65 mol $H_2O\;m^{-2}s^{-1}$, respectively. Conclusively, all the photosynthetic parameters that were examined in this study were generally higher in the HTI-resistant ginseng lines than in the HTI-susceptible lines, except for HTIR 2, and were much higher in August than in July, especially in the resistant ginseng lines. All these results can be used to provide basic information for the selection of HTI-resistant ginseng lines and the application of cultural practices that are efficient for ginseng growth, based on the photosynthetic characteristics of the lines.</description><identifier>ISSN: 1226-8453</identifier><identifier>EISSN: 2093-4947</identifier><language>kor</language><ispartof>Journal of ginseng research, 2012, Vol.36 (4), p.461-468</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024</link.rule.ids></links><search><creatorcontrib>Lee, Joon-Soo</creatorcontrib><creatorcontrib>Lee, Dong-Yun</creatorcontrib><creatorcontrib>Lee, Jang-Ho</creatorcontrib><creatorcontrib>Ahn, In-Ok</creatorcontrib><creatorcontrib>In, Jun-Guy</creatorcontrib><title>Photosynthetic Characteristics of Resistance and Susceptible Lines to High Temperature Injury in Panax ginseng Meyer</title><title>Journal of ginseng research</title><addtitle>高麗人參學會誌</addtitle><description>In this study, photosynthetic parameters such as the net photosynthesis rate, stomatal conductance, intercellular $CO_2$ concentration, and transpiration rate were examined in selected ginseng varieties and/or lines that are resistant (Yunpoong, HTIR 1, HTIR 2, and HTIR 3) and susceptible (Chunpoong) to high temperature injury (HTI). The net photosynthesis rate increased with the increase in the light intensity in all the HTI-resistant and -susceptible ginseng lines with a light saturation point of $200\;{\mu}mol\;m^{-2}s^{-1}$, except for Yunpoong that had a light saturation point of $400\;{\mu}mol\;m^{-2}s^{-1}$. At the light saturation point, the net photosynthesis rate in July was highest in HTIR 3, at $4.2\;{\mu}mol\;CO_2\;m^{-2}s^{-1}$, and was lowest in Yunpoong, HTIR 1, Chunpoong, and HTIR 2, in that order, at 1.9 to $3.7\;{\mu}mol\;CO_2\;m^{-2}s^{-1}$. The net photosynthesis rate in August was highest in Yunpoong at $5.9\;{\mu}mol\;CO_2\;m^{-2}s^{-1}$, and lowest in HTIR 1 and HTIR 3 ($4.5\;{\mu}mol\;CO_2\;m^{-2}s^{-1}$) and in other lines, in that order, at 2.8 to $2.9\;{\mu}mol\;CO_2\;m^{-2}s^{-1}$. The stomatal conductance in July was highest in HTIR 3 (0.055 mol $H_2O\;m^{-2}s^{-1}$) and Yunpoong, Chunpoong, HTIR 1, and HTIR 2 were 0.038, 0.037, 0.031, and 0.017 in that orders. In August, meanwhile, HTIR 1 showed the highest as 0.075, and followed by HTIR 3, Chungpoong, and HTIR 2 with 0.070, 0.047, and 0.023, respectively. The intercellular $CO_2$ concentration at the light saturation point in July and August was much lower in HTIR 2 at 139 and $185\;{\mu}mol\;mol^{-1}$ than in the other ginseng lines at 217 to 257 and 274 to $287\;{\mu}mol\;mol^{-1}$, respectively. The transpiration rate in July and August was higher in the HTI-resistant lines of Yunpoong, HTIR 1, and/or HTIR 3 at 0.83 to 1.03 and 1.67 to 2.10 mol $H_2O\;m^{-2}s^{-1}$ than in the other ginseng lines at 0.27 to 0.79 mol $H_2O\;m^{-2}s^{-1}$ and 0.51-1.65 mol $H_2O\;m^{-2}s^{-1}$, respectively. Conclusively, all the photosynthetic parameters that were examined in this study were generally higher in the HTI-resistant ginseng lines than in the HTI-susceptible lines, except for HTIR 2, and were much higher in August than in July, especially in the resistant ginseng lines. All these results can be used to provide basic information for the selection of HTI-resistant ginseng lines and the application of cultural practices that are efficient for ginseng growth, based on the photosynthetic characteristics of the lines.</description><issn>1226-8453</issn><issn>2093-4947</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNqNjsFqwkAURQepYKj-w9u4DMTJc2KWIi22VRR1L2N8JtOmLzJvAs3fN0I_oKvDgQP3DlSkkzyNMcfsSUUzrU28wHk6UhMRd0kQM0ScZZEK-6oJjXQcKgqugFVlvS0CeSe9CjQ3OJD0YrkgsHyFYysF3YO71AQbxyQQGli7soITfd_J29B6gjf-bH0HjmFv2f5A6ViIS9hSR36shjdbC03--Kymry-n1Tr-eqye-Sr1-X35sdNJ_zw3BjNjTK7T_3a_ZuxNGQ</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Lee, Joon-Soo</creator><creator>Lee, Dong-Yun</creator><creator>Lee, Jang-Ho</creator><creator>Ahn, In-Ok</creator><creator>In, Jun-Guy</creator><scope>JDI</scope></search><sort><creationdate>2012</creationdate><title>Photosynthetic Characteristics of Resistance and Susceptible Lines to High Temperature Injury in Panax ginseng Meyer</title><author>Lee, Joon-Soo ; Lee, Dong-Yun ; Lee, Jang-Ho ; Ahn, In-Ok ; In, Jun-Guy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kisti_ndsl_JAKO2012296647666923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Joon-Soo</creatorcontrib><creatorcontrib>Lee, Dong-Yun</creatorcontrib><creatorcontrib>Lee, Jang-Ho</creatorcontrib><creatorcontrib>Ahn, In-Ok</creatorcontrib><creatorcontrib>In, Jun-Guy</creatorcontrib><collection>KoreaScience</collection><jtitle>Journal of ginseng research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Joon-Soo</au><au>Lee, Dong-Yun</au><au>Lee, Jang-Ho</au><au>Ahn, In-Ok</au><au>In, Jun-Guy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photosynthetic Characteristics of Resistance and Susceptible Lines to High Temperature Injury in Panax ginseng Meyer</atitle><jtitle>Journal of ginseng research</jtitle><addtitle>高麗人參學會誌</addtitle><date>2012</date><risdate>2012</risdate><volume>36</volume><issue>4</issue><spage>461</spage><epage>468</epage><pages>461-468</pages><issn>1226-8453</issn><eissn>2093-4947</eissn><abstract>In this study, photosynthetic parameters such as the net photosynthesis rate, stomatal conductance, intercellular $CO_2$ concentration, and transpiration rate were examined in selected ginseng varieties and/or lines that are resistant (Yunpoong, HTIR 1, HTIR 2, and HTIR 3) and susceptible (Chunpoong) to high temperature injury (HTI). The net photosynthesis rate increased with the increase in the light intensity in all the HTI-resistant and -susceptible ginseng lines with a light saturation point of $200\;{\mu}mol\;m^{-2}s^{-1}$, except for Yunpoong that had a light saturation point of $400\;{\mu}mol\;m^{-2}s^{-1}$. At the light saturation point, the net photosynthesis rate in July was highest in HTIR 3, at $4.2\;{\mu}mol\;CO_2\;m^{-2}s^{-1}$, and was lowest in Yunpoong, HTIR 1, Chunpoong, and HTIR 2, in that order, at 1.9 to $3.7\;{\mu}mol\;CO_2\;m^{-2}s^{-1}$. The net photosynthesis rate in August was highest in Yunpoong at $5.9\;{\mu}mol\;CO_2\;m^{-2}s^{-1}$, and lowest in HTIR 1 and HTIR 3 ($4.5\;{\mu}mol\;CO_2\;m^{-2}s^{-1}$) and in other lines, in that order, at 2.8 to $2.9\;{\mu}mol\;CO_2\;m^{-2}s^{-1}$. The stomatal conductance in July was highest in HTIR 3 (0.055 mol $H_2O\;m^{-2}s^{-1}$) and Yunpoong, Chunpoong, HTIR 1, and HTIR 2 were 0.038, 0.037, 0.031, and 0.017 in that orders. In August, meanwhile, HTIR 1 showed the highest as 0.075, and followed by HTIR 3, Chungpoong, and HTIR 2 with 0.070, 0.047, and 0.023, respectively. The intercellular $CO_2$ concentration at the light saturation point in July and August was much lower in HTIR 2 at 139 and $185\;{\mu}mol\;mol^{-1}$ than in the other ginseng lines at 217 to 257 and 274 to $287\;{\mu}mol\;mol^{-1}$, respectively. The transpiration rate in July and August was higher in the HTI-resistant lines of Yunpoong, HTIR 1, and/or HTIR 3 at 0.83 to 1.03 and 1.67 to 2.10 mol $H_2O\;m^{-2}s^{-1}$ than in the other ginseng lines at 0.27 to 0.79 mol $H_2O\;m^{-2}s^{-1}$ and 0.51-1.65 mol $H_2O\;m^{-2}s^{-1}$, respectively. Conclusively, all the photosynthetic parameters that were examined in this study were generally higher in the HTI-resistant ginseng lines than in the HTI-susceptible lines, except for HTIR 2, and were much higher in August than in July, especially in the resistant ginseng lines. All these results can be used to provide basic information for the selection of HTI-resistant ginseng lines and the application of cultural practices that are efficient for ginseng growth, based on the photosynthetic characteristics of the lines.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1226-8453
ispartof Journal of ginseng research, 2012, Vol.36 (4), p.461-468
issn 1226-8453
2093-4947
language kor
recordid cdi_kisti_ndsl_JAKO201229664766692
source PubMed Central Open Access; PubMed Central; Alma/SFX Local Collection
title Photosynthetic Characteristics of Resistance and Susceptible Lines to High Temperature Injury in Panax ginseng Meyer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A00%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photosynthetic%20Characteristics%20of%20Resistance%20and%20Susceptible%20Lines%20to%20High%20Temperature%20Injury%20in%20Panax%20ginseng%20Meyer&rft.jtitle=Journal%20of%20ginseng%20research&rft.au=Lee,%20Joon-Soo&rft.date=2012&rft.volume=36&rft.issue=4&rft.spage=461&rft.epage=468&rft.pages=461-468&rft.issn=1226-8453&rft.eissn=2093-4947&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO201229664766692%3C/kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true