Unsupervised Motion Pattern Mining for Crowded Scenes Analysis

Crowded scenes analysis is a challenging topic in computer vision field. How to detect diverse motion patterns in crowded scenarios from videos is the critical yet hard part of this problem. In this paper, we propose a novel approach to mining motion patterns by utilizing motion information during b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:KSII transactions on Internet and information systems 2012-12, Vol.6 (12), p.3315-3337
Hauptverfasser: Wang, Chongjing, Zhao, Xu, Zou, Yi, Liu, Yuncai
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3337
container_issue 12
container_start_page 3315
container_title KSII transactions on Internet and information systems
container_volume 6
creator Wang, Chongjing
Zhao, Xu
Zou, Yi
Liu, Yuncai
description Crowded scenes analysis is a challenging topic in computer vision field. How to detect diverse motion patterns in crowded scenarios from videos is the critical yet hard part of this problem. In this paper, we propose a novel approach to mining motion patterns by utilizing motion information during both long-term period and short interval simultaneously. To capture long-term motions effectively, we introduce Motion History Image (MHI) representation to access to the global perspective about the crowd motion. The combination of MHI and optical flow, which is used to get instant motion information, gives rise to discriminative spatial-temporal motion features. Benefitting from the robustness and efficiency of the novel motion representation, the following motion pattern mining is implemented in a completely unsupervised way. The motion vectors are clustered hierarchically through automatic hierarchical clustering algorithm building on the basis of graphic model. This method overcomes the instability of optical flow in dealing with time continuity in crowded scenes. The results of clustering reveal the situations of motion pattern distribution in current crowded videos. To validate the performance of the proposed approach, we conduct experimental evaluations on some challenging videos including vehicles and pedestrians. The reliable detection results demonstrate the effectiveness of our approach.
format Article
fullrecord <record><control><sourceid>kiss_kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO201209857781739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><kiss_id>3532841</kiss_id><sourcerecordid>3532841</sourcerecordid><originalsourceid>FETCH-LOGICAL-k509-da20cf2d841e62d6ad620aa517cafea54f4190394e2c8867c5a54e42e4ea3d483</originalsourceid><addsrcrecordid>eNpNj01Lw0AYhBdRsNT-Ai978RjY74-LEIpftaWC9Rxes29kadyU3aj03xtQxNMMw8MMc0Jm3FtTWWHt6T9_ThalxFfGhRNGOTcj1y-pfBwwf8aCgW6GMQ6JPsE4Yk50E1NMb7QbMl3m4StMxHOLCQutE_THEssFOeugL7j41TnZ3d7slvfVenv3sKzX1V4zXwUQrO1EcIqjEcFAMIIBaG5b6BC06hT3THqFonXO2FZPGSqBCkEG5eScXP3U7mMZY5NC6ZtV_bgV0xPmnbbWcSv9xF3-caU55PgO-dhILcU0Lb8BGI9OQA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unsupervised Motion Pattern Mining for Crowded Scenes Analysis</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wang, Chongjing ; Zhao, Xu ; Zou, Yi ; Liu, Yuncai</creator><creatorcontrib>Wang, Chongjing ; Zhao, Xu ; Zou, Yi ; Liu, Yuncai</creatorcontrib><description>Crowded scenes analysis is a challenging topic in computer vision field. How to detect diverse motion patterns in crowded scenarios from videos is the critical yet hard part of this problem. In this paper, we propose a novel approach to mining motion patterns by utilizing motion information during both long-term period and short interval simultaneously. To capture long-term motions effectively, we introduce Motion History Image (MHI) representation to access to the global perspective about the crowd motion. The combination of MHI and optical flow, which is used to get instant motion information, gives rise to discriminative spatial-temporal motion features. Benefitting from the robustness and efficiency of the novel motion representation, the following motion pattern mining is implemented in a completely unsupervised way. The motion vectors are clustered hierarchically through automatic hierarchical clustering algorithm building on the basis of graphic model. This method overcomes the instability of optical flow in dealing with time continuity in crowded scenes. The results of clustering reveal the situations of motion pattern distribution in current crowded videos. To validate the performance of the proposed approach, we conduct experimental evaluations on some challenging videos including vehicles and pedestrians. The reliable detection results demonstrate the effectiveness of our approach.</description><identifier>ISSN: 1976-7277</identifier><identifier>EISSN: 1976-7277</identifier><language>kor</language><publisher>한국인터넷정보학회</publisher><subject>crowd analysis ; hierarchical clustering ; motion history image ; motion pattern ; optical flow</subject><ispartof>KSII transactions on Internet and information systems, 2012-12, Vol.6 (12), p.3315-3337</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids></links><search><creatorcontrib>Wang, Chongjing</creatorcontrib><creatorcontrib>Zhao, Xu</creatorcontrib><creatorcontrib>Zou, Yi</creatorcontrib><creatorcontrib>Liu, Yuncai</creatorcontrib><title>Unsupervised Motion Pattern Mining for Crowded Scenes Analysis</title><title>KSII transactions on Internet and information systems</title><addtitle>KSII Transactions on Internet and Information Systems (TIIS)</addtitle><description>Crowded scenes analysis is a challenging topic in computer vision field. How to detect diverse motion patterns in crowded scenarios from videos is the critical yet hard part of this problem. In this paper, we propose a novel approach to mining motion patterns by utilizing motion information during both long-term period and short interval simultaneously. To capture long-term motions effectively, we introduce Motion History Image (MHI) representation to access to the global perspective about the crowd motion. The combination of MHI and optical flow, which is used to get instant motion information, gives rise to discriminative spatial-temporal motion features. Benefitting from the robustness and efficiency of the novel motion representation, the following motion pattern mining is implemented in a completely unsupervised way. The motion vectors are clustered hierarchically through automatic hierarchical clustering algorithm building on the basis of graphic model. This method overcomes the instability of optical flow in dealing with time continuity in crowded scenes. The results of clustering reveal the situations of motion pattern distribution in current crowded videos. To validate the performance of the proposed approach, we conduct experimental evaluations on some challenging videos including vehicles and pedestrians. The reliable detection results demonstrate the effectiveness of our approach.</description><subject>crowd analysis</subject><subject>hierarchical clustering</subject><subject>motion history image</subject><subject>motion pattern</subject><subject>optical flow</subject><issn>1976-7277</issn><issn>1976-7277</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNpNj01Lw0AYhBdRsNT-Ai978RjY74-LEIpftaWC9Rxes29kadyU3aj03xtQxNMMw8MMc0Jm3FtTWWHt6T9_ThalxFfGhRNGOTcj1y-pfBwwf8aCgW6GMQ6JPsE4Yk50E1NMb7QbMl3m4StMxHOLCQutE_THEssFOeugL7j41TnZ3d7slvfVenv3sKzX1V4zXwUQrO1EcIqjEcFAMIIBaG5b6BC06hT3THqFonXO2FZPGSqBCkEG5eScXP3U7mMZY5NC6ZtV_bgV0xPmnbbWcSv9xF3-caU55PgO-dhILcU0Lb8BGI9OQA</recordid><startdate>20121231</startdate><enddate>20121231</enddate><creator>Wang, Chongjing</creator><creator>Zhao, Xu</creator><creator>Zou, Yi</creator><creator>Liu, Yuncai</creator><general>한국인터넷정보학회</general><scope>HZB</scope><scope>Q5X</scope><scope>JDI</scope></search><sort><creationdate>20121231</creationdate><title>Unsupervised Motion Pattern Mining for Crowded Scenes Analysis</title><author>Wang, Chongjing ; Zhao, Xu ; Zou, Yi ; Liu, Yuncai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-k509-da20cf2d841e62d6ad620aa517cafea54f4190394e2c8867c5a54e42e4ea3d483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2012</creationdate><topic>crowd analysis</topic><topic>hierarchical clustering</topic><topic>motion history image</topic><topic>motion pattern</topic><topic>optical flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chongjing</creatorcontrib><creatorcontrib>Zhao, Xu</creatorcontrib><creatorcontrib>Zou, Yi</creatorcontrib><creatorcontrib>Liu, Yuncai</creatorcontrib><collection>Korean Studies Information Service System (KISS)</collection><collection>Korean Studies Information Service System (KISS) B-Type</collection><collection>KoreaScience</collection><jtitle>KSII transactions on Internet and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chongjing</au><au>Zhao, Xu</au><au>Zou, Yi</au><au>Liu, Yuncai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised Motion Pattern Mining for Crowded Scenes Analysis</atitle><jtitle>KSII transactions on Internet and information systems</jtitle><addtitle>KSII Transactions on Internet and Information Systems (TIIS)</addtitle><date>2012-12-31</date><risdate>2012</risdate><volume>6</volume><issue>12</issue><spage>3315</spage><epage>3337</epage><pages>3315-3337</pages><issn>1976-7277</issn><eissn>1976-7277</eissn><abstract>Crowded scenes analysis is a challenging topic in computer vision field. How to detect diverse motion patterns in crowded scenarios from videos is the critical yet hard part of this problem. In this paper, we propose a novel approach to mining motion patterns by utilizing motion information during both long-term period and short interval simultaneously. To capture long-term motions effectively, we introduce Motion History Image (MHI) representation to access to the global perspective about the crowd motion. The combination of MHI and optical flow, which is used to get instant motion information, gives rise to discriminative spatial-temporal motion features. Benefitting from the robustness and efficiency of the novel motion representation, the following motion pattern mining is implemented in a completely unsupervised way. The motion vectors are clustered hierarchically through automatic hierarchical clustering algorithm building on the basis of graphic model. This method overcomes the instability of optical flow in dealing with time continuity in crowded scenes. The results of clustering reveal the situations of motion pattern distribution in current crowded videos. To validate the performance of the proposed approach, we conduct experimental evaluations on some challenging videos including vehicles and pedestrians. The reliable detection results demonstrate the effectiveness of our approach.</abstract><pub>한국인터넷정보학회</pub><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1976-7277
ispartof KSII transactions on Internet and information systems, 2012-12, Vol.6 (12), p.3315-3337
issn 1976-7277
1976-7277
language kor
recordid cdi_kisti_ndsl_JAKO201209857781739
source EZB-FREE-00999 freely available EZB journals
subjects crowd analysis
hierarchical clustering
motion history image
motion pattern
optical flow
title Unsupervised Motion Pattern Mining for Crowded Scenes Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A18%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kiss_kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20Motion%20Pattern%20Mining%20for%20Crowded%20Scenes%20Analysis&rft.jtitle=KSII%20transactions%20on%20Internet%20and%20information%20systems&rft.au=Wang,%20Chongjing&rft.date=2012-12-31&rft.volume=6&rft.issue=12&rft.spage=3315&rft.epage=3337&rft.pages=3315-3337&rft.issn=1976-7277&rft.eissn=1976-7277&rft_id=info:doi/&rft_dat=%3Ckiss_kisti%3E3532841%3C/kiss_kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_kiss_id=3532841&rfr_iscdi=true