Generalized Partially Linear Additive Models for Credit Scoring

Credit scoring is an objective and automatic system to assess the credit risk of each customer. The logistic regression model is one of the popular methods of credit scoring to predict the default probability; however, it may not detect possible nonlinear features of predictors despite the advantage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ŭngyong tʻonggye yŏnʼgu 2011, Vol.24 (4), p.587-595
Hauptverfasser: Shim, Ju-Hyun, Lee, Young-K
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 595
container_issue 4
container_start_page 587
container_title Ŭngyong tʻonggye yŏnʼgu
container_volume 24
creator Shim, Ju-Hyun
Lee, Young-K
description Credit scoring is an objective and automatic system to assess the credit risk of each customer. The logistic regression model is one of the popular methods of credit scoring to predict the default probability; however, it may not detect possible nonlinear features of predictors despite the advantages of interpretability and low computation cost. In this paper, we propose to use a generalized partially linear model as an alternative to logistic regression. We also introduce modern ensemble technologies such as bagging, boosting and random forests. We compare these methods via a simulation study and illustrate them through a German credit dataset.
format Article
fullrecord <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO201126235932028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO201126235932028</sourcerecordid><originalsourceid>FETCH-kisti_ndsl_JAKO2011262359320283</originalsourceid><addsrcrecordid>eNpjYeA0NDIy1TUwM4vgYOAtLs4yAAIzQyMTC0tOBnv31LzUosSczKrUFIWAxKKSzMScnEoFn8y81MQiBceUlMySzLJUBd_8lNScYoW0_CIF56JUoKBCcHJ-UWZeOg8Da1piTnEqL5TmZlB1cw1x9tDNziwuyYzPSynOifdy9PY3MjA0NDIzMja1NDYyMLIwJlYdAHAENpk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generalized Partially Linear Additive Models for Credit Scoring</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Shim, Ju-Hyun ; Lee, Young-K</creator><creatorcontrib>Shim, Ju-Hyun ; Lee, Young-K</creatorcontrib><description>Credit scoring is an objective and automatic system to assess the credit risk of each customer. The logistic regression model is one of the popular methods of credit scoring to predict the default probability; however, it may not detect possible nonlinear features of predictors despite the advantages of interpretability and low computation cost. In this paper, we propose to use a generalized partially linear model as an alternative to logistic regression. We also introduce modern ensemble technologies such as bagging, boosting and random forests. We compare these methods via a simulation study and illustrate them through a German credit dataset.</description><identifier>ISSN: 1225-066X</identifier><language>kor</language><ispartof>Ŭngyong tʻonggye yŏnʼgu, 2011, Vol.24 (4), p.587-595</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010</link.rule.ids></links><search><creatorcontrib>Shim, Ju-Hyun</creatorcontrib><creatorcontrib>Lee, Young-K</creatorcontrib><title>Generalized Partially Linear Additive Models for Credit Scoring</title><title>Ŭngyong tʻonggye yŏnʼgu</title><addtitle>The Korean journal of applied statistics</addtitle><description>Credit scoring is an objective and automatic system to assess the credit risk of each customer. The logistic regression model is one of the popular methods of credit scoring to predict the default probability; however, it may not detect possible nonlinear features of predictors despite the advantages of interpretability and low computation cost. In this paper, we propose to use a generalized partially linear model as an alternative to logistic regression. We also introduce modern ensemble technologies such as bagging, boosting and random forests. We compare these methods via a simulation study and illustrate them through a German credit dataset.</description><issn>1225-066X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNpjYeA0NDIy1TUwM4vgYOAtLs4yAAIzQyMTC0tOBnv31LzUosSczKrUFIWAxKKSzMScnEoFn8y81MQiBceUlMySzLJUBd_8lNScYoW0_CIF56JUoKBCcHJ-UWZeOg8Da1piTnEqL5TmZlB1cw1x9tDNziwuyYzPSynOifdy9PY3MjA0NDIzMja1NDYyMLIwJlYdAHAENpk</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Shim, Ju-Hyun</creator><creator>Lee, Young-K</creator><scope>JDI</scope></search><sort><creationdate>2011</creationdate><title>Generalized Partially Linear Additive Models for Credit Scoring</title><author>Shim, Ju-Hyun ; Lee, Young-K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kisti_ndsl_JAKO2011262359320283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2011</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Shim, Ju-Hyun</creatorcontrib><creatorcontrib>Lee, Young-K</creatorcontrib><collection>KoreaScience</collection><jtitle>Ŭngyong tʻonggye yŏnʼgu</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shim, Ju-Hyun</au><au>Lee, Young-K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Partially Linear Additive Models for Credit Scoring</atitle><jtitle>Ŭngyong tʻonggye yŏnʼgu</jtitle><addtitle>The Korean journal of applied statistics</addtitle><date>2011</date><risdate>2011</risdate><volume>24</volume><issue>4</issue><spage>587</spage><epage>595</epage><pages>587-595</pages><issn>1225-066X</issn><abstract>Credit scoring is an objective and automatic system to assess the credit risk of each customer. The logistic regression model is one of the popular methods of credit scoring to predict the default probability; however, it may not detect possible nonlinear features of predictors despite the advantages of interpretability and low computation cost. In this paper, we propose to use a generalized partially linear model as an alternative to logistic regression. We also introduce modern ensemble technologies such as bagging, boosting and random forests. We compare these methods via a simulation study and illustrate them through a German credit dataset.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1225-066X
ispartof Ŭngyong tʻonggye yŏnʼgu, 2011, Vol.24 (4), p.587-595
issn 1225-066X
language kor
recordid cdi_kisti_ndsl_JAKO201126235932028
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Generalized Partially Linear Additive Models for Credit Scoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A24%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Partially%20Linear%20Additive%20Models%20for%20Credit%20Scoring&rft.jtitle=%C5%ACngyong%20t%CA%BBonggye%20y%C5%8Fn%CA%BCgu&rft.au=Shim,%20Ju-Hyun&rft.date=2011&rft.volume=24&rft.issue=4&rft.spage=587&rft.epage=595&rft.pages=587-595&rft.issn=1225-066X&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO201126235932028%3C/kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true