Generalized Partially Linear Additive Models for Credit Scoring
Credit scoring is an objective and automatic system to assess the credit risk of each customer. The logistic regression model is one of the popular methods of credit scoring to predict the default probability; however, it may not detect possible nonlinear features of predictors despite the advantage...
Gespeichert in:
Veröffentlicht in: | Ŭngyong tʻonggye yŏnʼgu 2011, Vol.24 (4), p.587-595 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 595 |
---|---|
container_issue | 4 |
container_start_page | 587 |
container_title | Ŭngyong tʻonggye yŏnʼgu |
container_volume | 24 |
creator | Shim, Ju-Hyun Lee, Young-K |
description | Credit scoring is an objective and automatic system to assess the credit risk of each customer. The logistic regression model is one of the popular methods of credit scoring to predict the default probability; however, it may not detect possible nonlinear features of predictors despite the advantages of interpretability and low computation cost. In this paper, we propose to use a generalized partially linear model as an alternative to logistic regression. We also introduce modern ensemble technologies such as bagging, boosting and random forests. We compare these methods via a simulation study and illustrate them through a German credit dataset. |
format | Article |
fullrecord | <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO201126235932028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO201126235932028</sourcerecordid><originalsourceid>FETCH-kisti_ndsl_JAKO2011262359320283</originalsourceid><addsrcrecordid>eNpjYeA0NDIy1TUwM4vgYOAtLs4yAAIzQyMTC0tOBnv31LzUosSczKrUFIWAxKKSzMScnEoFn8y81MQiBceUlMySzLJUBd_8lNScYoW0_CIF56JUoKBCcHJ-UWZeOg8Da1piTnEqL5TmZlB1cw1x9tDNziwuyYzPSynOifdy9PY3MjA0NDIzMja1NDYyMLIwJlYdAHAENpk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generalized Partially Linear Additive Models for Credit Scoring</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Shim, Ju-Hyun ; Lee, Young-K</creator><creatorcontrib>Shim, Ju-Hyun ; Lee, Young-K</creatorcontrib><description>Credit scoring is an objective and automatic system to assess the credit risk of each customer. The logistic regression model is one of the popular methods of credit scoring to predict the default probability; however, it may not detect possible nonlinear features of predictors despite the advantages of interpretability and low computation cost. In this paper, we propose to use a generalized partially linear model as an alternative to logistic regression. We also introduce modern ensemble technologies such as bagging, boosting and random forests. We compare these methods via a simulation study and illustrate them through a German credit dataset.</description><identifier>ISSN: 1225-066X</identifier><language>kor</language><ispartof>Ŭngyong tʻonggye yŏnʼgu, 2011, Vol.24 (4), p.587-595</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010</link.rule.ids></links><search><creatorcontrib>Shim, Ju-Hyun</creatorcontrib><creatorcontrib>Lee, Young-K</creatorcontrib><title>Generalized Partially Linear Additive Models for Credit Scoring</title><title>Ŭngyong tʻonggye yŏnʼgu</title><addtitle>The Korean journal of applied statistics</addtitle><description>Credit scoring is an objective and automatic system to assess the credit risk of each customer. The logistic regression model is one of the popular methods of credit scoring to predict the default probability; however, it may not detect possible nonlinear features of predictors despite the advantages of interpretability and low computation cost. In this paper, we propose to use a generalized partially linear model as an alternative to logistic regression. We also introduce modern ensemble technologies such as bagging, boosting and random forests. We compare these methods via a simulation study and illustrate them through a German credit dataset.</description><issn>1225-066X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNpjYeA0NDIy1TUwM4vgYOAtLs4yAAIzQyMTC0tOBnv31LzUosSczKrUFIWAxKKSzMScnEoFn8y81MQiBceUlMySzLJUBd_8lNScYoW0_CIF56JUoKBCcHJ-UWZeOg8Da1piTnEqL5TmZlB1cw1x9tDNziwuyYzPSynOifdy9PY3MjA0NDIzMja1NDYyMLIwJlYdAHAENpk</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Shim, Ju-Hyun</creator><creator>Lee, Young-K</creator><scope>JDI</scope></search><sort><creationdate>2011</creationdate><title>Generalized Partially Linear Additive Models for Credit Scoring</title><author>Shim, Ju-Hyun ; Lee, Young-K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kisti_ndsl_JAKO2011262359320283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2011</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Shim, Ju-Hyun</creatorcontrib><creatorcontrib>Lee, Young-K</creatorcontrib><collection>KoreaScience</collection><jtitle>Ŭngyong tʻonggye yŏnʼgu</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shim, Ju-Hyun</au><au>Lee, Young-K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Partially Linear Additive Models for Credit Scoring</atitle><jtitle>Ŭngyong tʻonggye yŏnʼgu</jtitle><addtitle>The Korean journal of applied statistics</addtitle><date>2011</date><risdate>2011</risdate><volume>24</volume><issue>4</issue><spage>587</spage><epage>595</epage><pages>587-595</pages><issn>1225-066X</issn><abstract>Credit scoring is an objective and automatic system to assess the credit risk of each customer. The logistic regression model is one of the popular methods of credit scoring to predict the default probability; however, it may not detect possible nonlinear features of predictors despite the advantages of interpretability and low computation cost. In this paper, we propose to use a generalized partially linear model as an alternative to logistic regression. We also introduce modern ensemble technologies such as bagging, boosting and random forests. We compare these methods via a simulation study and illustrate them through a German credit dataset.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1225-066X |
ispartof | Ŭngyong tʻonggye yŏnʼgu, 2011, Vol.24 (4), p.587-595 |
issn | 1225-066X |
language | kor |
recordid | cdi_kisti_ndsl_JAKO201126235932028 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Generalized Partially Linear Additive Models for Credit Scoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A24%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Partially%20Linear%20Additive%20Models%20for%20Credit%20Scoring&rft.jtitle=%C5%ACngyong%20t%CA%BBonggye%20y%C5%8Fn%CA%BCgu&rft.au=Shim,%20Ju-Hyun&rft.date=2011&rft.volume=24&rft.issue=4&rft.spage=587&rft.epage=595&rft.pages=587-595&rft.issn=1225-066X&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO201126235932028%3C/kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |