A Kinetic Study on Aminolysis of S-4-Nitrophenyl Thiobenzoate in H 2 O Containing 20 mol % DMSO and 44 wt % EtOH: Effect of Medium on Reactivity and Mechanism

Second-order rate constants ($k_N$) have been measured for nucleophilic substitution reactions of S-4-nitrophenyl thiobenzoate with a series of alicyclic secondary amines in $H_2O$ containing 20 mol % DMSO at 25.0 ${\pm}$ 0.1 ${^{\circ}C}$. The Br$\phi$nsted-type plot exhibits a downward curvature,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Korean Chemical Society 2009, Vol.30 (1), p.214-218
Hauptverfasser: Ahn, Jung-Ae, Park, Youn-Min, Um, Ik-Hwan
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Second-order rate constants ($k_N$) have been measured for nucleophilic substitution reactions of S-4-nitrophenyl thiobenzoate with a series of alicyclic secondary amines in $H_2O$ containing 20 mol % DMSO at 25.0 ${\pm}$ 0.1 ${^{\circ}C}$. The Br$\phi$nsted-type plot exhibits a downward curvature, i.e., $\beta_{nuc}$ decreases from 0.94 to 0.34 as the amine basicity increases. The reactions in the aqueous DMSO have also been suggested to proceed through a zwitterionic tetrahedral intermediate (T${\pm}$) with change in the RDS on the basis of the curved Br$\phi$nsted-type plot. The reactions in the aqueous DMSO exhibit larger $k_N$ values than those in the aqueous EtOH. The macroscopic rate constants ($k_N$) for the reactions in the two solvent systems have been dissected into the microscopic rate constants ($k_1\;and\;k_2/k_{-1}$ ratio) to investigate effect of medium on reactivity in the microscopic level. It has been found that the $k_2/k_{-1}$ ratios are similar for the reactions in the two solvent systems, while $k_1$ values are larger for the reactions in 20 mol % DMSO than for those in 44 wt % EtOH, indicating that the larger $k_1$ is mainly responsible for the larger $k_N$. It has been suggested that the transition state is more stabilized in 20 mol % DMSO through mutual polarizability interaction than in 44 wt % EtOH through H-bonding interaction.
ISSN:0253-2964
1229-5949