EXISTENCE RESULT FOR HEAT-CONDUCTING VISCOUS INCOMPRESSIBLE FLUIDS WITH VACUUM

The Navier-Stokes system for heat-conducting incompressible fluids is studied in a domain ${\Omega}{\subset}R^3$. The viscosity, heat conduction coefficients and specific heat at constant volume are allowed to depend smoothly on density and temperature. We prove local existence of the unique strong...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Mathematical Society 2008, Vol.45 (3), p.645-681
Hauptverfasser: Cho, Yong-Geun, Kim, Hyun-Seok
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 681
container_issue 3
container_start_page 645
container_title Journal of the Korean Mathematical Society
container_volume 45
creator Cho, Yong-Geun
Kim, Hyun-Seok
description The Navier-Stokes system for heat-conducting incompressible fluids is studied in a domain ${\Omega}{\subset}R^3$. The viscosity, heat conduction coefficients and specific heat at constant volume are allowed to depend smoothly on density and temperature. We prove local existence of the unique strong solution, provided the initial data satisfy a natural compatibility condition. For the strong regularity, we do not assume the positivity of initial density; it may vanish in an open subset (vacuum) of ${\Omega}$ or decay at infinity when ${\Omega}$ is unbounded.
format Article
fullrecord <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO200821041224316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO200821041224316</sourcerecordid><originalsourceid>FETCH-kisti_ndsl_JAKO2008210412243163</originalsourceid><addsrcrecordid>eNqNyjEOgjAUANAOmkiUO_zFkaQtlcCIpUi1tIa26EY0akIkLvX-0cEDOL3lzVCEU8ySoiBsgeIQxismNKeMbbIIaXGW1gnNBXTCeuWgNh00onQJN7ry3Em9g15abrwFqblpj99o5VYJqJWXlYWTdA30Jfe-XaH54zKFe_xzida1cLxJnmN4j8PrFqZhXx4MxTinBDNCKUtJlv77Pq9BNRU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>EXISTENCE RESULT FOR HEAT-CONDUCTING VISCOUS INCOMPRESSIBLE FLUIDS WITH VACUUM</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Cho, Yong-Geun ; Kim, Hyun-Seok</creator><creatorcontrib>Cho, Yong-Geun ; Kim, Hyun-Seok</creatorcontrib><description>The Navier-Stokes system for heat-conducting incompressible fluids is studied in a domain ${\Omega}{\subset}R^3$. The viscosity, heat conduction coefficients and specific heat at constant volume are allowed to depend smoothly on density and temperature. We prove local existence of the unique strong solution, provided the initial data satisfy a natural compatibility condition. For the strong regularity, we do not assume the positivity of initial density; it may vanish in an open subset (vacuum) of ${\Omega}$ or decay at infinity when ${\Omega}$ is unbounded.</description><identifier>ISSN: 0304-9914</identifier><language>kor</language><ispartof>Journal of the Korean Mathematical Society, 2008, Vol.45 (3), p.645-681</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010</link.rule.ids></links><search><creatorcontrib>Cho, Yong-Geun</creatorcontrib><creatorcontrib>Kim, Hyun-Seok</creatorcontrib><title>EXISTENCE RESULT FOR HEAT-CONDUCTING VISCOUS INCOMPRESSIBLE FLUIDS WITH VACUUM</title><title>Journal of the Korean Mathematical Society</title><addtitle>대한수학회지</addtitle><description>The Navier-Stokes system for heat-conducting incompressible fluids is studied in a domain ${\Omega}{\subset}R^3$. The viscosity, heat conduction coefficients and specific heat at constant volume are allowed to depend smoothly on density and temperature. We prove local existence of the unique strong solution, provided the initial data satisfy a natural compatibility condition. For the strong regularity, we do not assume the positivity of initial density; it may vanish in an open subset (vacuum) of ${\Omega}$ or decay at infinity when ${\Omega}$ is unbounded.</description><issn>0304-9914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNqNyjEOgjAUANAOmkiUO_zFkaQtlcCIpUi1tIa26EY0akIkLvX-0cEDOL3lzVCEU8ySoiBsgeIQxismNKeMbbIIaXGW1gnNBXTCeuWgNh00onQJN7ry3Em9g15abrwFqblpj99o5VYJqJWXlYWTdA30Jfe-XaH54zKFe_xzida1cLxJnmN4j8PrFqZhXx4MxTinBDNCKUtJlv77Pq9BNRU</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Cho, Yong-Geun</creator><creator>Kim, Hyun-Seok</creator><scope>JDI</scope></search><sort><creationdate>2008</creationdate><title>EXISTENCE RESULT FOR HEAT-CONDUCTING VISCOUS INCOMPRESSIBLE FLUIDS WITH VACUUM</title><author>Cho, Yong-Geun ; Kim, Hyun-Seok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kisti_ndsl_JAKO2008210412243163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Yong-Geun</creatorcontrib><creatorcontrib>Kim, Hyun-Seok</creatorcontrib><collection>KoreaScience</collection><jtitle>Journal of the Korean Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Yong-Geun</au><au>Kim, Hyun-Seok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EXISTENCE RESULT FOR HEAT-CONDUCTING VISCOUS INCOMPRESSIBLE FLUIDS WITH VACUUM</atitle><jtitle>Journal of the Korean Mathematical Society</jtitle><addtitle>대한수학회지</addtitle><date>2008</date><risdate>2008</risdate><volume>45</volume><issue>3</issue><spage>645</spage><epage>681</epage><pages>645-681</pages><issn>0304-9914</issn><abstract>The Navier-Stokes system for heat-conducting incompressible fluids is studied in a domain ${\Omega}{\subset}R^3$. The viscosity, heat conduction coefficients and specific heat at constant volume are allowed to depend smoothly on density and temperature. We prove local existence of the unique strong solution, provided the initial data satisfy a natural compatibility condition. For the strong regularity, we do not assume the positivity of initial density; it may vanish in an open subset (vacuum) of ${\Omega}$ or decay at infinity when ${\Omega}$ is unbounded.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-9914
ispartof Journal of the Korean Mathematical Society, 2008, Vol.45 (3), p.645-681
issn 0304-9914
language kor
recordid cdi_kisti_ndsl_JAKO200821041224316
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title EXISTENCE RESULT FOR HEAT-CONDUCTING VISCOUS INCOMPRESSIBLE FLUIDS WITH VACUUM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T03%3A30%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EXISTENCE%20RESULT%20FOR%20HEAT-CONDUCTING%20VISCOUS%20INCOMPRESSIBLE%20FLUIDS%20WITH%20VACUUM&rft.jtitle=Journal%20of%20the%20Korean%20Mathematical%20Society&rft.au=Cho,%20Yong-Geun&rft.date=2008&rft.volume=45&rft.issue=3&rft.spage=645&rft.epage=681&rft.pages=645-681&rft.issn=0304-9914&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO200821041224316%3C/kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true