EXISTENCE RESULT FOR HEAT-CONDUCTING VISCOUS INCOMPRESSIBLE FLUIDS WITH VACUUM
The Navier-Stokes system for heat-conducting incompressible fluids is studied in a domain ${\Omega}{\subset}R^3$. The viscosity, heat conduction coefficients and specific heat at constant volume are allowed to depend smoothly on density and temperature. We prove local existence of the unique strong...
Gespeichert in:
Veröffentlicht in: | Journal of the Korean Mathematical Society 2008, Vol.45 (3), p.645-681 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 681 |
---|---|
container_issue | 3 |
container_start_page | 645 |
container_title | Journal of the Korean Mathematical Society |
container_volume | 45 |
creator | Cho, Yong-Geun Kim, Hyun-Seok |
description | The Navier-Stokes system for heat-conducting incompressible fluids is studied in a domain ${\Omega}{\subset}R^3$. The viscosity, heat conduction coefficients and specific heat at constant volume are allowed to depend smoothly on density and temperature. We prove local existence of the unique strong solution, provided the initial data satisfy a natural compatibility condition. For the strong regularity, we do not assume the positivity of initial density; it may vanish in an open subset (vacuum) of ${\Omega}$ or decay at infinity when ${\Omega}$ is unbounded. |
format | Article |
fullrecord | <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO200821041224316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO200821041224316</sourcerecordid><originalsourceid>FETCH-kisti_ndsl_JAKO2008210412243163</originalsourceid><addsrcrecordid>eNqNyjEOgjAUANAOmkiUO_zFkaQtlcCIpUi1tIa26EY0akIkLvX-0cEDOL3lzVCEU8ySoiBsgeIQxismNKeMbbIIaXGW1gnNBXTCeuWgNh00onQJN7ry3Em9g15abrwFqblpj99o5VYJqJWXlYWTdA30Jfe-XaH54zKFe_xzida1cLxJnmN4j8PrFqZhXx4MxTinBDNCKUtJlv77Pq9BNRU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>EXISTENCE RESULT FOR HEAT-CONDUCTING VISCOUS INCOMPRESSIBLE FLUIDS WITH VACUUM</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Cho, Yong-Geun ; Kim, Hyun-Seok</creator><creatorcontrib>Cho, Yong-Geun ; Kim, Hyun-Seok</creatorcontrib><description>The Navier-Stokes system for heat-conducting incompressible fluids is studied in a domain ${\Omega}{\subset}R^3$. The viscosity, heat conduction coefficients and specific heat at constant volume are allowed to depend smoothly on density and temperature. We prove local existence of the unique strong solution, provided the initial data satisfy a natural compatibility condition. For the strong regularity, we do not assume the positivity of initial density; it may vanish in an open subset (vacuum) of ${\Omega}$ or decay at infinity when ${\Omega}$ is unbounded.</description><identifier>ISSN: 0304-9914</identifier><language>kor</language><ispartof>Journal of the Korean Mathematical Society, 2008, Vol.45 (3), p.645-681</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010</link.rule.ids></links><search><creatorcontrib>Cho, Yong-Geun</creatorcontrib><creatorcontrib>Kim, Hyun-Seok</creatorcontrib><title>EXISTENCE RESULT FOR HEAT-CONDUCTING VISCOUS INCOMPRESSIBLE FLUIDS WITH VACUUM</title><title>Journal of the Korean Mathematical Society</title><addtitle>대한수학회지</addtitle><description>The Navier-Stokes system for heat-conducting incompressible fluids is studied in a domain ${\Omega}{\subset}R^3$. The viscosity, heat conduction coefficients and specific heat at constant volume are allowed to depend smoothly on density and temperature. We prove local existence of the unique strong solution, provided the initial data satisfy a natural compatibility condition. For the strong regularity, we do not assume the positivity of initial density; it may vanish in an open subset (vacuum) of ${\Omega}$ or decay at infinity when ${\Omega}$ is unbounded.</description><issn>0304-9914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNqNyjEOgjAUANAOmkiUO_zFkaQtlcCIpUi1tIa26EY0akIkLvX-0cEDOL3lzVCEU8ySoiBsgeIQxismNKeMbbIIaXGW1gnNBXTCeuWgNh00onQJN7ry3Em9g15abrwFqblpj99o5VYJqJWXlYWTdA30Jfe-XaH54zKFe_xzida1cLxJnmN4j8PrFqZhXx4MxTinBDNCKUtJlv77Pq9BNRU</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Cho, Yong-Geun</creator><creator>Kim, Hyun-Seok</creator><scope>JDI</scope></search><sort><creationdate>2008</creationdate><title>EXISTENCE RESULT FOR HEAT-CONDUCTING VISCOUS INCOMPRESSIBLE FLUIDS WITH VACUUM</title><author>Cho, Yong-Geun ; Kim, Hyun-Seok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kisti_ndsl_JAKO2008210412243163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Yong-Geun</creatorcontrib><creatorcontrib>Kim, Hyun-Seok</creatorcontrib><collection>KoreaScience</collection><jtitle>Journal of the Korean Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Yong-Geun</au><au>Kim, Hyun-Seok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EXISTENCE RESULT FOR HEAT-CONDUCTING VISCOUS INCOMPRESSIBLE FLUIDS WITH VACUUM</atitle><jtitle>Journal of the Korean Mathematical Society</jtitle><addtitle>대한수학회지</addtitle><date>2008</date><risdate>2008</risdate><volume>45</volume><issue>3</issue><spage>645</spage><epage>681</epage><pages>645-681</pages><issn>0304-9914</issn><abstract>The Navier-Stokes system for heat-conducting incompressible fluids is studied in a domain ${\Omega}{\subset}R^3$. The viscosity, heat conduction coefficients and specific heat at constant volume are allowed to depend smoothly on density and temperature. We prove local existence of the unique strong solution, provided the initial data satisfy a natural compatibility condition. For the strong regularity, we do not assume the positivity of initial density; it may vanish in an open subset (vacuum) of ${\Omega}$ or decay at infinity when ${\Omega}$ is unbounded.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-9914 |
ispartof | Journal of the Korean Mathematical Society, 2008, Vol.45 (3), p.645-681 |
issn | 0304-9914 |
language | kor |
recordid | cdi_kisti_ndsl_JAKO200821041224316 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | EXISTENCE RESULT FOR HEAT-CONDUCTING VISCOUS INCOMPRESSIBLE FLUIDS WITH VACUUM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T03%3A30%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EXISTENCE%20RESULT%20FOR%20HEAT-CONDUCTING%20VISCOUS%20INCOMPRESSIBLE%20FLUIDS%20WITH%20VACUUM&rft.jtitle=Journal%20of%20the%20Korean%20Mathematical%20Society&rft.au=Cho,%20Yong-Geun&rft.date=2008&rft.volume=45&rft.issue=3&rft.spage=645&rft.epage=681&rft.pages=645-681&rft.issn=0304-9914&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO200821041224316%3C/kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |