Experimental investigation on peculiarities of the filtration combustion of the gaseous fuel-air mixtures in the porous inertia media

This study investigates peculiarities of the filtration combustion (FC) of the gaseous fuel-air mixtures in a porous inertia media (PIM). Combustion wave velocities and temperatures were measured fur hydrogen-air, propane-air and methane-air mixtures in the PIM at different mixture filtration veloci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mechanical science and technology 2007, Vol.21 (11), p.1799-1806
Hauptverfasser: Mbarawa, M, Kakukina, N.A, Korzhavin, A.A
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigates peculiarities of the filtration combustion (FC) of the gaseous fuel-air mixtures in a porous inertia media (PIM). Combustion wave velocities and temperatures were measured fur hydrogen-air, propane-air and methane-air mixtures in the PIM at different mixture filtration velocities. It is shown that the dependences of the combustion wave velocities on the equivalence ratio are V-shaped. It was further confirmed that the FC in the PIM has more contrasts than similarities with the normal homogeneous combustion. One of the interesting observations in the present study, which is not common in normal homogenous combustion, is the shifting of the fuel-air equivalent ratio at the minimum combustion wave velocity from the stoichiometric condition (${\phi}\;=\;1$). For a hydrogen-air mixture, the fuel-air equivalence ratio at the minimum combustion velocity shifts from the stoichiometric condition to the rich region, while for the propane-air and methane-air mixtures the fuel-air equivalence ratio at the minimum combustion velocity shifts toward fuel-leaner conditions. The measured maximum porous media temperatures in the combustion waves are found to be weakly dependent on the mixture filtration velocities. In general, the effects of the mixture filtration velocities on the measured maximum porous media temperatures are not significant.
ISSN:1738-494X
1976-3824