Copolymerization of Ethylene and Norbornene via Polymethylene Bridged Dinuclear Constrained Geometry Catalysts
The dinuclear half-sandwich CGCs (constrained geometry catalyst) with a polymethylene bridge, $[Ti({\eta}^5 : {\eta}^1-indenyl)SiMe_2NCMe_3]_2(CH_2)_n]$[n = 6 (1) and 12 (2)], have been employed in the copolymerization of ethylene and norbornene (NBE). To compare the mononuclear metallocene catalyst...
Gespeichert in:
Veröffentlicht in: | Macromolecular research 2007, Vol.15 (5), p.430-436 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 436 |
---|---|
container_issue | 5 |
container_start_page | 430 |
container_title | Macromolecular research |
container_volume | 15 |
creator | Zhu, Yin-Bang Jeong, Eung-Yeong Lee, Bae-Wook Kim, Bong-Shik Noh, Seok-Kyun Lyoo, Won-Seok Lee, Dong-Ho Kim, Yong-Man |
description | The dinuclear half-sandwich CGCs (constrained geometry catalyst) with a polymethylene bridge, $[Ti({\eta}^5 : {\eta}^1-indenyl)SiMe_2NCMe_3]_2(CH_2)_n]$[n = 6 (1) and 12 (2)], have been employed in the copolymerization of ethylene and norbornene (NBE). To compare the mononuclear metallocene catalysts; $Ti({\eta}^5 : {\eta}^1-2-hexylindenyl)SiMe_2NCMe_3$ (3), $(Cp^* SiMe_2NCMe_3)$Ti (Dow CGC) (4) and ansa-$Et(Ind)_2ZrCI_2$ (5), were also studied for the copolymerization of ethylene and NBE. It was found that the activity increased in the order: 1 < 2 < 3 < 5 < 4, indicating that the presence of the bridge between two the CGC units contributed to depressing the polymerization activity of the CGCs. This result strongly suggests that the implication of steric disturbance due to the presence of the bridge may playa significant role in slowing the activity. Dinuclear CGCs have been found to be very efficient for the incorporation of NBE onto the polyethylene backbone. The NBE contents in the copolymers formed ranged from 10 to 42%, depending on the polymerization conditions. Strong chemical shifts were observed at ${\delta}$42.0 and 47.8 of the isotactic alternating NBE sequences, NENEN, in the copolymers with high NBE contents. In addition, a resonance at 47.1 ppm for the sequences of the isolated NBE, EENEE, was observed in the $^{13}C-NMR$ spectra of the copolymers with low NBE contents. The absence of signals for isotactic dyad at 48.1 and 49.1 ppm illustrated there were no isotactic or microblock (NBE-NBE) sequences in the copolymers. This result indicated that the dinuclear CGCs were effective for making randomly distributed ethylene-NBE copolymers. |
format | Article |
fullrecord | <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO200734515891092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO200734515891092</sourcerecordid><originalsourceid>FETCH-kisti_ndsl_JAKO2007345158910923</originalsourceid><addsrcrecordid>eNqNz82KwjAUBeAgI1hG3yEbl4W0MaZdascfFNSF-xJt1IvxZkiiUJ_eKrp3dTiHb3NaJEpZnsZyKPkPiRKRZ7FgPO2QnvewY4JzOcxyGREs7L819UU7uKsAFqk90Ek41UajpgorurJuZx0-6w0U3bz0B4wdVEdd0T_A695o5Whh0QenAJt1pm1DXU0LFZSpffBd0j4o43Xvnb-kP51si3l8Bh-gxMqbcjFarlPGJB-IRGR50hzh37oHoB1LbQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Copolymerization of Ethylene and Norbornene via Polymethylene Bridged Dinuclear Constrained Geometry Catalysts</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhu, Yin-Bang ; Jeong, Eung-Yeong ; Lee, Bae-Wook ; Kim, Bong-Shik ; Noh, Seok-Kyun ; Lyoo, Won-Seok ; Lee, Dong-Ho ; Kim, Yong-Man</creator><creatorcontrib>Zhu, Yin-Bang ; Jeong, Eung-Yeong ; Lee, Bae-Wook ; Kim, Bong-Shik ; Noh, Seok-Kyun ; Lyoo, Won-Seok ; Lee, Dong-Ho ; Kim, Yong-Man</creatorcontrib><description>The dinuclear half-sandwich CGCs (constrained geometry catalyst) with a polymethylene bridge, $[Ti({\eta}^5 : {\eta}^1-indenyl)SiMe_2NCMe_3]_2(CH_2)_n]$[n = 6 (1) and 12 (2)], have been employed in the copolymerization of ethylene and norbornene (NBE). To compare the mononuclear metallocene catalysts; $Ti({\eta}^5 : {\eta}^1-2-hexylindenyl)SiMe_2NCMe_3$ (3), $(Cp^* SiMe_2NCMe_3)$Ti (Dow CGC) (4) and ansa-$Et(Ind)_2ZrCI_2$ (5), were also studied for the copolymerization of ethylene and NBE. It was found that the activity increased in the order: 1 < 2 < 3 < 5 < 4, indicating that the presence of the bridge between two the CGC units contributed to depressing the polymerization activity of the CGCs. This result strongly suggests that the implication of steric disturbance due to the presence of the bridge may playa significant role in slowing the activity. Dinuclear CGCs have been found to be very efficient for the incorporation of NBE onto the polyethylene backbone. The NBE contents in the copolymers formed ranged from 10 to 42%, depending on the polymerization conditions. Strong chemical shifts were observed at ${\delta}$42.0 and 47.8 of the isotactic alternating NBE sequences, NENEN, in the copolymers with high NBE contents. In addition, a resonance at 47.1 ppm for the sequences of the isolated NBE, EENEE, was observed in the $^{13}C-NMR$ spectra of the copolymers with low NBE contents. The absence of signals for isotactic dyad at 48.1 and 49.1 ppm illustrated there were no isotactic or microblock (NBE-NBE) sequences in the copolymers. This result indicated that the dinuclear CGCs were effective for making randomly distributed ethylene-NBE copolymers.</description><identifier>ISSN: 1598-5032</identifier><identifier>EISSN: 2092-7673</identifier><language>kor</language><ispartof>Macromolecular research, 2007, Vol.15 (5), p.430-436</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010</link.rule.ids></links><search><creatorcontrib>Zhu, Yin-Bang</creatorcontrib><creatorcontrib>Jeong, Eung-Yeong</creatorcontrib><creatorcontrib>Lee, Bae-Wook</creatorcontrib><creatorcontrib>Kim, Bong-Shik</creatorcontrib><creatorcontrib>Noh, Seok-Kyun</creatorcontrib><creatorcontrib>Lyoo, Won-Seok</creatorcontrib><creatorcontrib>Lee, Dong-Ho</creatorcontrib><creatorcontrib>Kim, Yong-Man</creatorcontrib><title>Copolymerization of Ethylene and Norbornene via Polymethylene Bridged Dinuclear Constrained Geometry Catalysts</title><title>Macromolecular research</title><addtitle>Macromolecular research</addtitle><description>The dinuclear half-sandwich CGCs (constrained geometry catalyst) with a polymethylene bridge, $[Ti({\eta}^5 : {\eta}^1-indenyl)SiMe_2NCMe_3]_2(CH_2)_n]$[n = 6 (1) and 12 (2)], have been employed in the copolymerization of ethylene and norbornene (NBE). To compare the mononuclear metallocene catalysts; $Ti({\eta}^5 : {\eta}^1-2-hexylindenyl)SiMe_2NCMe_3$ (3), $(Cp^* SiMe_2NCMe_3)$Ti (Dow CGC) (4) and ansa-$Et(Ind)_2ZrCI_2$ (5), were also studied for the copolymerization of ethylene and NBE. It was found that the activity increased in the order: 1 < 2 < 3 < 5 < 4, indicating that the presence of the bridge between two the CGC units contributed to depressing the polymerization activity of the CGCs. This result strongly suggests that the implication of steric disturbance due to the presence of the bridge may playa significant role in slowing the activity. Dinuclear CGCs have been found to be very efficient for the incorporation of NBE onto the polyethylene backbone. The NBE contents in the copolymers formed ranged from 10 to 42%, depending on the polymerization conditions. Strong chemical shifts were observed at ${\delta}$42.0 and 47.8 of the isotactic alternating NBE sequences, NENEN, in the copolymers with high NBE contents. In addition, a resonance at 47.1 ppm for the sequences of the isolated NBE, EENEE, was observed in the $^{13}C-NMR$ spectra of the copolymers with low NBE contents. The absence of signals for isotactic dyad at 48.1 and 49.1 ppm illustrated there were no isotactic or microblock (NBE-NBE) sequences in the copolymers. This result indicated that the dinuclear CGCs were effective for making randomly distributed ethylene-NBE copolymers.</description><issn>1598-5032</issn><issn>2092-7673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNqNz82KwjAUBeAgI1hG3yEbl4W0MaZdascfFNSF-xJt1IvxZkiiUJ_eKrp3dTiHb3NaJEpZnsZyKPkPiRKRZ7FgPO2QnvewY4JzOcxyGREs7L819UU7uKsAFqk90Ek41UajpgorurJuZx0-6w0U3bz0B4wdVEdd0T_A695o5Whh0QenAJt1pm1DXU0LFZSpffBd0j4o43Xvnb-kP51si3l8Bh-gxMqbcjFarlPGJB-IRGR50hzh37oHoB1LbQ</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>Zhu, Yin-Bang</creator><creator>Jeong, Eung-Yeong</creator><creator>Lee, Bae-Wook</creator><creator>Kim, Bong-Shik</creator><creator>Noh, Seok-Kyun</creator><creator>Lyoo, Won-Seok</creator><creator>Lee, Dong-Ho</creator><creator>Kim, Yong-Man</creator><scope>JDI</scope></search><sort><creationdate>2007</creationdate><title>Copolymerization of Ethylene and Norbornene via Polymethylene Bridged Dinuclear Constrained Geometry Catalysts</title><author>Zhu, Yin-Bang ; Jeong, Eung-Yeong ; Lee, Bae-Wook ; Kim, Bong-Shik ; Noh, Seok-Kyun ; Lyoo, Won-Seok ; Lee, Dong-Ho ; Kim, Yong-Man</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kisti_ndsl_JAKO2007345158910923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yin-Bang</creatorcontrib><creatorcontrib>Jeong, Eung-Yeong</creatorcontrib><creatorcontrib>Lee, Bae-Wook</creatorcontrib><creatorcontrib>Kim, Bong-Shik</creatorcontrib><creatorcontrib>Noh, Seok-Kyun</creatorcontrib><creatorcontrib>Lyoo, Won-Seok</creatorcontrib><creatorcontrib>Lee, Dong-Ho</creatorcontrib><creatorcontrib>Kim, Yong-Man</creatorcontrib><collection>KoreaScience</collection><jtitle>Macromolecular research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yin-Bang</au><au>Jeong, Eung-Yeong</au><au>Lee, Bae-Wook</au><au>Kim, Bong-Shik</au><au>Noh, Seok-Kyun</au><au>Lyoo, Won-Seok</au><au>Lee, Dong-Ho</au><au>Kim, Yong-Man</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Copolymerization of Ethylene and Norbornene via Polymethylene Bridged Dinuclear Constrained Geometry Catalysts</atitle><jtitle>Macromolecular research</jtitle><addtitle>Macromolecular research</addtitle><date>2007</date><risdate>2007</risdate><volume>15</volume><issue>5</issue><spage>430</spage><epage>436</epage><pages>430-436</pages><issn>1598-5032</issn><eissn>2092-7673</eissn><abstract>The dinuclear half-sandwich CGCs (constrained geometry catalyst) with a polymethylene bridge, $[Ti({\eta}^5 : {\eta}^1-indenyl)SiMe_2NCMe_3]_2(CH_2)_n]$[n = 6 (1) and 12 (2)], have been employed in the copolymerization of ethylene and norbornene (NBE). To compare the mononuclear metallocene catalysts; $Ti({\eta}^5 : {\eta}^1-2-hexylindenyl)SiMe_2NCMe_3$ (3), $(Cp^* SiMe_2NCMe_3)$Ti (Dow CGC) (4) and ansa-$Et(Ind)_2ZrCI_2$ (5), were also studied for the copolymerization of ethylene and NBE. It was found that the activity increased in the order: 1 < 2 < 3 < 5 < 4, indicating that the presence of the bridge between two the CGC units contributed to depressing the polymerization activity of the CGCs. This result strongly suggests that the implication of steric disturbance due to the presence of the bridge may playa significant role in slowing the activity. Dinuclear CGCs have been found to be very efficient for the incorporation of NBE onto the polyethylene backbone. The NBE contents in the copolymers formed ranged from 10 to 42%, depending on the polymerization conditions. Strong chemical shifts were observed at ${\delta}$42.0 and 47.8 of the isotactic alternating NBE sequences, NENEN, in the copolymers with high NBE contents. In addition, a resonance at 47.1 ppm for the sequences of the isolated NBE, EENEE, was observed in the $^{13}C-NMR$ spectra of the copolymers with low NBE contents. The absence of signals for isotactic dyad at 48.1 and 49.1 ppm illustrated there were no isotactic or microblock (NBE-NBE) sequences in the copolymers. This result indicated that the dinuclear CGCs were effective for making randomly distributed ethylene-NBE copolymers.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1598-5032 |
ispartof | Macromolecular research, 2007, Vol.15 (5), p.430-436 |
issn | 1598-5032 2092-7673 |
language | kor |
recordid | cdi_kisti_ndsl_JAKO200734515891092 |
source | Springer Nature - Complete Springer Journals |
title | Copolymerization of Ethylene and Norbornene via Polymethylene Bridged Dinuclear Constrained Geometry Catalysts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A44%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Copolymerization%20of%20Ethylene%20and%20Norbornene%20via%20Polymethylene%20Bridged%20Dinuclear%20Constrained%20Geometry%20Catalysts&rft.jtitle=Macromolecular%20research&rft.au=Zhu,%20Yin-Bang&rft.date=2007&rft.volume=15&rft.issue=5&rft.spage=430&rft.epage=436&rft.pages=430-436&rft.issn=1598-5032&rft.eissn=2092-7673&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO200734515891092%3C/kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |