Real-time Identification of the Draft System Using Neural Network

Making a good model is one of the most important aspects in the field of a control system. If one makes a good model, one is now ready to make a good controller for the system. The focus of this thesis lies on system modeling, the draft system in specific. In modeling for a draft system, one of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fibers and polymers 2006-03, Vol.7 (1), p.62-65
Hauptverfasser: Soon Yong Chun, Han Jo Bae, Seon Mi Kim, Moon W. Suh, P. Grady, Won Seok Lyoo, Won Sik Yoon, Sung Soo Han
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 65
container_issue 1
container_start_page 62
container_title Fibers and polymers
container_volume 7
creator Soon Yong Chun
Han Jo Bae
Seon Mi Kim
Moon W. Suh
P. Grady
Won Seok Lyoo
Won Sik Yoon
Sung Soo Han
description Making a good model is one of the most important aspects in the field of a control system. If one makes a good model, one is now ready to make a good controller for the system. The focus of this thesis lies on system modeling, the draft system in specific. In modeling for a draft system, one of the most common methods is the 'least-square method'; however, this method can only be applied to linear systems. For this reason, the draft system, which is non-linear and a time-varying system, needs a new method. This thesis proposes a new method (the MLS method) and demonstrates a possible way of modeling even though a system has input noise and system noise. This thesis proved the adaptability and convergence of the MLS method.
format Article
fullrecord <record><control><sourceid>kiss_kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO200617033447251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><kiss_id>2515204</kiss_id><sourcerecordid>2515204</sourcerecordid><originalsourceid>FETCH-LOGICAL-k501-82fa88161ddac2bfd4c64487b4d36a5e4252f62aeaca7273a33fda5c29115c73</originalsourceid><addsrcrecordid>eNo9j0tLAzEUhQdRsNT-AjfZuAwkN6-ZZamv1mLB6nq4k4eGeckkIv33DiiuvgPn48A5Kxa8NIoypuB8zgAVrXhlLotVSrFhgoMWQupFsX7x2NEce0-2zg85hmgxx3EgYyD5w5PbCUMmx1PKvidvKQ7v5Nl_TdjNyN_j1F4VFwG75Fd_XBbH-7vXzSPdHx62m_WetopxWkLAsuSaO4cWmuCk1VKWppFOaFRegoKgAT1aNGAEChEcKgsV58oasSxuflfbmHKsB5e6erd-OgBjmhs2n5EGFJ-9638v1Z9T7HE61XOjgEnxA0l7Tlk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Real-time Identification of the Draft System Using Neural Network</title><source>SpringerLink Journals</source><creator>Soon Yong Chun ; Han Jo Bae ; Seon Mi Kim ; Moon W. Suh ; P. Grady ; Won Seok Lyoo ; Won Sik Yoon ; Sung Soo Han</creator><creatorcontrib>Soon Yong Chun ; Han Jo Bae ; Seon Mi Kim ; Moon W. Suh ; P. Grady ; Won Seok Lyoo ; Won Sik Yoon ; Sung Soo Han</creatorcontrib><description>Making a good model is one of the most important aspects in the field of a control system. If one makes a good model, one is now ready to make a good controller for the system. The focus of this thesis lies on system modeling, the draft system in specific. In modeling for a draft system, one of the most common methods is the 'least-square method'; however, this method can only be applied to linear systems. For this reason, the draft system, which is non-linear and a time-varying system, needs a new method. This thesis proposes a new method (the MLS method) and demonstrates a possible way of modeling even though a system has input noise and system noise. This thesis proved the adaptability and convergence of the MLS method.</description><identifier>ISSN: 1229-9197</identifier><identifier>EISSN: 1875-0052</identifier><language>kor</language><publisher>한국섬유공학회</publisher><subject>Control ; Draft system ; Modeling ; Neural network ; Sliver</subject><ispartof>Fibers and polymers, 2006-03, Vol.7 (1), p.62-65</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids></links><search><creatorcontrib>Soon Yong Chun</creatorcontrib><creatorcontrib>Han Jo Bae</creatorcontrib><creatorcontrib>Seon Mi Kim</creatorcontrib><creatorcontrib>Moon W. Suh</creatorcontrib><creatorcontrib>P. Grady</creatorcontrib><creatorcontrib>Won Seok Lyoo</creatorcontrib><creatorcontrib>Won Sik Yoon</creatorcontrib><creatorcontrib>Sung Soo Han</creatorcontrib><title>Real-time Identification of the Draft System Using Neural Network</title><title>Fibers and polymers</title><addtitle>Fibers and Polymers</addtitle><description>Making a good model is one of the most important aspects in the field of a control system. If one makes a good model, one is now ready to make a good controller for the system. The focus of this thesis lies on system modeling, the draft system in specific. In modeling for a draft system, one of the most common methods is the 'least-square method'; however, this method can only be applied to linear systems. For this reason, the draft system, which is non-linear and a time-varying system, needs a new method. This thesis proposes a new method (the MLS method) and demonstrates a possible way of modeling even though a system has input noise and system noise. This thesis proved the adaptability and convergence of the MLS method.</description><subject>Control</subject><subject>Draft system</subject><subject>Modeling</subject><subject>Neural network</subject><subject>Sliver</subject><issn>1229-9197</issn><issn>1875-0052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNo9j0tLAzEUhQdRsNT-AjfZuAwkN6-ZZamv1mLB6nq4k4eGeckkIv33DiiuvgPn48A5Kxa8NIoypuB8zgAVrXhlLotVSrFhgoMWQupFsX7x2NEce0-2zg85hmgxx3EgYyD5w5PbCUMmx1PKvidvKQ7v5Nl_TdjNyN_j1F4VFwG75Fd_XBbH-7vXzSPdHx62m_WetopxWkLAsuSaO4cWmuCk1VKWppFOaFRegoKgAT1aNGAEChEcKgsV58oasSxuflfbmHKsB5e6erd-OgBjmhs2n5EGFJ-9638v1Z9T7HE61XOjgEnxA0l7Tlk</recordid><startdate>20060330</startdate><enddate>20060330</enddate><creator>Soon Yong Chun</creator><creator>Han Jo Bae</creator><creator>Seon Mi Kim</creator><creator>Moon W. Suh</creator><creator>P. Grady</creator><creator>Won Seok Lyoo</creator><creator>Won Sik Yoon</creator><creator>Sung Soo Han</creator><general>한국섬유공학회</general><scope>HZB</scope><scope>Q5X</scope><scope>JDI</scope></search><sort><creationdate>20060330</creationdate><title>Real-time Identification of the Draft System Using Neural Network</title><author>Soon Yong Chun ; Han Jo Bae ; Seon Mi Kim ; Moon W. Suh ; P. Grady ; Won Seok Lyoo ; Won Sik Yoon ; Sung Soo Han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-k501-82fa88161ddac2bfd4c64487b4d36a5e4252f62aeaca7273a33fda5c29115c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2006</creationdate><topic>Control</topic><topic>Draft system</topic><topic>Modeling</topic><topic>Neural network</topic><topic>Sliver</topic><toplevel>online_resources</toplevel><creatorcontrib>Soon Yong Chun</creatorcontrib><creatorcontrib>Han Jo Bae</creatorcontrib><creatorcontrib>Seon Mi Kim</creatorcontrib><creatorcontrib>Moon W. Suh</creatorcontrib><creatorcontrib>P. Grady</creatorcontrib><creatorcontrib>Won Seok Lyoo</creatorcontrib><creatorcontrib>Won Sik Yoon</creatorcontrib><creatorcontrib>Sung Soo Han</creatorcontrib><collection>Korean Studies Information Service System (KISS)</collection><collection>Korean Studies Information Service System (KISS) B-Type</collection><collection>KoreaScience</collection><jtitle>Fibers and polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soon Yong Chun</au><au>Han Jo Bae</au><au>Seon Mi Kim</au><au>Moon W. Suh</au><au>P. Grady</au><au>Won Seok Lyoo</au><au>Won Sik Yoon</au><au>Sung Soo Han</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time Identification of the Draft System Using Neural Network</atitle><jtitle>Fibers and polymers</jtitle><addtitle>Fibers and Polymers</addtitle><date>2006-03-30</date><risdate>2006</risdate><volume>7</volume><issue>1</issue><spage>62</spage><epage>65</epage><pages>62-65</pages><issn>1229-9197</issn><eissn>1875-0052</eissn><abstract>Making a good model is one of the most important aspects in the field of a control system. If one makes a good model, one is now ready to make a good controller for the system. The focus of this thesis lies on system modeling, the draft system in specific. In modeling for a draft system, one of the most common methods is the 'least-square method'; however, this method can only be applied to linear systems. For this reason, the draft system, which is non-linear and a time-varying system, needs a new method. This thesis proposes a new method (the MLS method) and demonstrates a possible way of modeling even though a system has input noise and system noise. This thesis proved the adaptability and convergence of the MLS method.</abstract><pub>한국섬유공학회</pub><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1229-9197
ispartof Fibers and polymers, 2006-03, Vol.7 (1), p.62-65
issn 1229-9197
1875-0052
language kor
recordid cdi_kisti_ndsl_JAKO200617033447251
source SpringerLink Journals
subjects Control
Draft system
Modeling
Neural network
Sliver
title Real-time Identification of the Draft System Using Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A36%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kiss_kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20Identification%20of%20the%20Draft%20System%20Using%20Neural%20Network&rft.jtitle=Fibers%20and%20polymers&rft.au=Soon%20Yong%20Chun&rft.date=2006-03-30&rft.volume=7&rft.issue=1&rft.spage=62&rft.epage=65&rft.pages=62-65&rft.issn=1229-9197&rft.eissn=1875-0052&rft_id=info:doi/&rft_dat=%3Ckiss_kisti%3E2515204%3C/kiss_kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_kiss_id=2515204&rfr_iscdi=true