Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol

Nanofluid is a novel heat transfer fluid prepared by dispersing nanometer-sized solid particles in traditional heat transfer fluid to increase thermal conductivity and heat transfer performance. In this research we have considered the rheological properties of nanofluids made of CuO particles of 10-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Korea-Australia rheology journal 2005, Vol.17 (2), p.35-40
Hauptverfasser: Kwak, Ki-Yuel, Kim, Chong-Youp
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40
container_issue 2
container_start_page 35
container_title Korea-Australia rheology journal
container_volume 17
creator Kwak, Ki-Yuel
Kim, Chong-Youp
description Nanofluid is a novel heat transfer fluid prepared by dispersing nanometer-sized solid particles in traditional heat transfer fluid to increase thermal conductivity and heat transfer performance. In this research we have considered the rheological properties of nanofluids made of CuO particles of 10-30nm in length and ethylene glycol in conjunction with the thermal conductivity enhancement. When examined using TEM, individual CuO particles have the shape of prolate spheroid of the aspect ratio of 3 and most of the particles are under aggregated states even after sonication for a prolonged period. From the rheological property it has been found that the volume fraction at the dilute limit is 0.002, which is much smaller than the value based on the shape and size of individual particles due to aggregation of particles. At the semi-dilute regime, the zero shear viscosity follows the Doi-Edwards theory on rodlike particles. The thermal conductivity measurement shows that substantial enhancement in thermal conductivity with respect to particle concentration is attainable only when particle concentration is below the dilute limit.
format Article
fullrecord <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO200504703989169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO200504703989169</sourcerecordid><originalsourceid>FETCH-kisti_ndsl_JAKO2005047039891693</originalsourceid><addsrcrecordid>eNqNirEKwjAURYMoWNR_eItjIW00bUYRRXRwEdFJapPqw5iUvij271XwA5wu55zbYVHKlYgzKXmXRUmayjhJ1KHPRkR45lMhMpnLPGLHPVLpCUMLhdMQrqa5FxZK7_SjDPj8Bl99uK5NA_6F2oArnK_sAzVopI8mowEdmHBtrXEGLrYtvR2yXlVYMqPfDth4udjNV_ENKeDJabKn9WyzTTmf8knGhcpVIpX49_cGBNdDvg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kwak, Ki-Yuel ; Kim, Chong-Youp</creator><creatorcontrib>Kwak, Ki-Yuel ; Kim, Chong-Youp</creatorcontrib><description>Nanofluid is a novel heat transfer fluid prepared by dispersing nanometer-sized solid particles in traditional heat transfer fluid to increase thermal conductivity and heat transfer performance. In this research we have considered the rheological properties of nanofluids made of CuO particles of 10-30nm in length and ethylene glycol in conjunction with the thermal conductivity enhancement. When examined using TEM, individual CuO particles have the shape of prolate spheroid of the aspect ratio of 3 and most of the particles are under aggregated states even after sonication for a prolonged period. From the rheological property it has been found that the volume fraction at the dilute limit is 0.002, which is much smaller than the value based on the shape and size of individual particles due to aggregation of particles. At the semi-dilute regime, the zero shear viscosity follows the Doi-Edwards theory on rodlike particles. The thermal conductivity measurement shows that substantial enhancement in thermal conductivity with respect to particle concentration is attainable only when particle concentration is below the dilute limit.</description><identifier>ISSN: 1226-119X</identifier><identifier>EISSN: 2093-7660</identifier><language>kor</language><ispartof>Korea-Australia rheology journal, 2005, Vol.17 (2), p.35-40</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4022</link.rule.ids></links><search><creatorcontrib>Kwak, Ki-Yuel</creatorcontrib><creatorcontrib>Kim, Chong-Youp</creatorcontrib><title>Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol</title><title>Korea-Australia rheology journal</title><addtitle>Korea-Australia rheology journal</addtitle><description>Nanofluid is a novel heat transfer fluid prepared by dispersing nanometer-sized solid particles in traditional heat transfer fluid to increase thermal conductivity and heat transfer performance. In this research we have considered the rheological properties of nanofluids made of CuO particles of 10-30nm in length and ethylene glycol in conjunction with the thermal conductivity enhancement. When examined using TEM, individual CuO particles have the shape of prolate spheroid of the aspect ratio of 3 and most of the particles are under aggregated states even after sonication for a prolonged period. From the rheological property it has been found that the volume fraction at the dilute limit is 0.002, which is much smaller than the value based on the shape and size of individual particles due to aggregation of particles. At the semi-dilute regime, the zero shear viscosity follows the Doi-Edwards theory on rodlike particles. The thermal conductivity measurement shows that substantial enhancement in thermal conductivity with respect to particle concentration is attainable only when particle concentration is below the dilute limit.</description><issn>1226-119X</issn><issn>2093-7660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNqNirEKwjAURYMoWNR_eItjIW00bUYRRXRwEdFJapPqw5iUvij271XwA5wu55zbYVHKlYgzKXmXRUmayjhJ1KHPRkR45lMhMpnLPGLHPVLpCUMLhdMQrqa5FxZK7_SjDPj8Bl99uK5NA_6F2oArnK_sAzVopI8mowEdmHBtrXEGLrYtvR2yXlVYMqPfDth4udjNV_ENKeDJabKn9WyzTTmf8knGhcpVIpX49_cGBNdDvg</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Kwak, Ki-Yuel</creator><creator>Kim, Chong-Youp</creator><scope>JDI</scope></search><sort><creationdate>2005</creationdate><title>Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol</title><author>Kwak, Ki-Yuel ; Kim, Chong-Youp</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kisti_ndsl_JAKO2005047039891693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwak, Ki-Yuel</creatorcontrib><creatorcontrib>Kim, Chong-Youp</creatorcontrib><collection>KoreaScience</collection><jtitle>Korea-Australia rheology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwak, Ki-Yuel</au><au>Kim, Chong-Youp</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol</atitle><jtitle>Korea-Australia rheology journal</jtitle><addtitle>Korea-Australia rheology journal</addtitle><date>2005</date><risdate>2005</risdate><volume>17</volume><issue>2</issue><spage>35</spage><epage>40</epage><pages>35-40</pages><issn>1226-119X</issn><eissn>2093-7660</eissn><abstract>Nanofluid is a novel heat transfer fluid prepared by dispersing nanometer-sized solid particles in traditional heat transfer fluid to increase thermal conductivity and heat transfer performance. In this research we have considered the rheological properties of nanofluids made of CuO particles of 10-30nm in length and ethylene glycol in conjunction with the thermal conductivity enhancement. When examined using TEM, individual CuO particles have the shape of prolate spheroid of the aspect ratio of 3 and most of the particles are under aggregated states even after sonication for a prolonged period. From the rheological property it has been found that the volume fraction at the dilute limit is 0.002, which is much smaller than the value based on the shape and size of individual particles due to aggregation of particles. At the semi-dilute regime, the zero shear viscosity follows the Doi-Edwards theory on rodlike particles. The thermal conductivity measurement shows that substantial enhancement in thermal conductivity with respect to particle concentration is attainable only when particle concentration is below the dilute limit.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1226-119X
ispartof Korea-Australia rheology journal, 2005, Vol.17 (2), p.35-40
issn 1226-119X
2093-7660
language kor
recordid cdi_kisti_ndsl_JAKO200504703989169
source EZB-FREE-00999 freely available EZB journals
title Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A55%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viscosity%20and%20thermal%20conductivity%20of%20copper%20oxide%20nanofluid%20dispersed%20in%20ethylene%20glycol&rft.jtitle=Korea-Australia%20rheology%20journal&rft.au=Kwak,%20Ki-Yuel&rft.date=2005&rft.volume=17&rft.issue=2&rft.spage=35&rft.epage=40&rft.pages=35-40&rft.issn=1226-119X&rft.eissn=2093-7660&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO200504703989169%3C/kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true