THE REFLECTION OF SOLUTIONS OF HELMHOLTZ EQUATION AND AN APPLICATION
It is the purpose of this paper to study the reflection of solutions of Helmholtz equation with Neumann boundary data. In detail let u be a solution of Helmholtz equation in the exterior of a ball in R$^3$ with exterior Neumann data ∂(sub)νu = 0 on the boundary of the ball. We prove that u can be ex...
Gespeichert in:
Veröffentlicht in: | Communications of the Korean Mathematical Society 2001, Vol.16 (3), p.427-436 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 436 |
---|---|
container_issue | 3 |
container_start_page | 427 |
container_title | Communications of the Korean Mathematical Society |
container_volume | 16 |
creator | Yun, Ki-Hyun |
description | It is the purpose of this paper to study the reflection of solutions of Helmholtz equation with Neumann boundary data. In detail let u be a solution of Helmholtz equation in the exterior of a ball in R$^3$ with exterior Neumann data ∂(sub)νu = 0 on the boundary of the ball. We prove that u can be extended to R$^3$ except the center of the ball. As a corollary, we prove that a sound hard ball can be identified by the scattering amplitude corresponding to a single incident direction and as single frequency. |
format | Article |
fullrecord | <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO200111920736257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO200111920736257</sourcerecordid><originalsourceid>FETCH-kisti_ndsl_JAKO2001119207362573</originalsourceid><addsrcrecordid>eNpjYuA0MjI20TU2MDJhYeA0NDIy1TU0NzPmYOAtLs5MMjA2MzK3MDUw4GRwCfFwVQhydfNxdQ7x9PdT8HdTCPb3CQWxg0EcD1cfXw9_n5AoBdfAUEewEkc_FyBWcAwI8PF0BgvxMLCmJeYUp_JCaW4GVTfXEGcP3ezM4pLM-LyU4px4L0dvfyMDA0NDQ0sjA3OgA0zNjYlVBwDJHzO2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>THE REFLECTION OF SOLUTIONS OF HELMHOLTZ EQUATION AND AN APPLICATION</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yun, Ki-Hyun</creator><creatorcontrib>Yun, Ki-Hyun</creatorcontrib><description>It is the purpose of this paper to study the reflection of solutions of Helmholtz equation with Neumann boundary data. In detail let u be a solution of Helmholtz equation in the exterior of a ball in R$^3$ with exterior Neumann data ∂(sub)νu = 0 on the boundary of the ball. We prove that u can be extended to R$^3$ except the center of the ball. As a corollary, we prove that a sound hard ball can be identified by the scattering amplitude corresponding to a single incident direction and as single frequency.</description><identifier>ISSN: 1225-1763</identifier><identifier>EISSN: 2234-3024</identifier><language>kor</language><ispartof>Communications of the Korean Mathematical Society, 2001, Vol.16 (3), p.427-436</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024</link.rule.ids></links><search><creatorcontrib>Yun, Ki-Hyun</creatorcontrib><title>THE REFLECTION OF SOLUTIONS OF HELMHOLTZ EQUATION AND AN APPLICATION</title><title>Communications of the Korean Mathematical Society</title><addtitle>대한수학회논문집</addtitle><description>It is the purpose of this paper to study the reflection of solutions of Helmholtz equation with Neumann boundary data. In detail let u be a solution of Helmholtz equation in the exterior of a ball in R$^3$ with exterior Neumann data ∂(sub)νu = 0 on the boundary of the ball. We prove that u can be extended to R$^3$ except the center of the ball. As a corollary, we prove that a sound hard ball can be identified by the scattering amplitude corresponding to a single incident direction and as single frequency.</description><issn>1225-1763</issn><issn>2234-3024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNpjYuA0MjI20TU2MDJhYeA0NDIy1TU0NzPmYOAtLs5MMjA2MzK3MDUw4GRwCfFwVQhydfNxdQ7x9PdT8HdTCPb3CQWxg0EcD1cfXw9_n5AoBdfAUEewEkc_FyBWcAwI8PF0BgvxMLCmJeYUp_JCaW4GVTfXEGcP3ezM4pLM-LyU4px4L0dvfyMDA0NDQ0sjA3OgA0zNjYlVBwDJHzO2</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Yun, Ki-Hyun</creator><scope>JDI</scope></search><sort><creationdate>2001</creationdate><title>THE REFLECTION OF SOLUTIONS OF HELMHOLTZ EQUATION AND AN APPLICATION</title><author>Yun, Ki-Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kisti_ndsl_JAKO2001119207362573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yun, Ki-Hyun</creatorcontrib><collection>KoreaScience</collection><jtitle>Communications of the Korean Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yun, Ki-Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE REFLECTION OF SOLUTIONS OF HELMHOLTZ EQUATION AND AN APPLICATION</atitle><jtitle>Communications of the Korean Mathematical Society</jtitle><addtitle>대한수학회논문집</addtitle><date>2001</date><risdate>2001</risdate><volume>16</volume><issue>3</issue><spage>427</spage><epage>436</epage><pages>427-436</pages><issn>1225-1763</issn><eissn>2234-3024</eissn><abstract>It is the purpose of this paper to study the reflection of solutions of Helmholtz equation with Neumann boundary data. In detail let u be a solution of Helmholtz equation in the exterior of a ball in R$^3$ with exterior Neumann data ∂(sub)νu = 0 on the boundary of the ball. We prove that u can be extended to R$^3$ except the center of the ball. As a corollary, we prove that a sound hard ball can be identified by the scattering amplitude corresponding to a single incident direction and as single frequency.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1225-1763 |
ispartof | Communications of the Korean Mathematical Society, 2001, Vol.16 (3), p.427-436 |
issn | 1225-1763 2234-3024 |
language | kor |
recordid | cdi_kisti_ndsl_JAKO200111920736257 |
source | EZB-FREE-00999 freely available EZB journals |
title | THE REFLECTION OF SOLUTIONS OF HELMHOLTZ EQUATION AND AN APPLICATION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A04%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20REFLECTION%20OF%20SOLUTIONS%20OF%20HELMHOLTZ%20EQUATION%20AND%20AN%20APPLICATION&rft.jtitle=Communications%20of%20the%20Korean%20Mathematical%20Society&rft.au=Yun,%20Ki-Hyun&rft.date=2001&rft.volume=16&rft.issue=3&rft.spage=427&rft.epage=436&rft.pages=427-436&rft.issn=1225-1763&rft.eissn=2234-3024&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO200111920736257%3C/kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |