THE REFLECTION OF SOLUTIONS OF HELMHOLTZ EQUATION AND AN APPLICATION

It is the purpose of this paper to study the reflection of solutions of Helmholtz equation with Neumann boundary data. In detail let u be a solution of Helmholtz equation in the exterior of a ball in R$^3$ with exterior Neumann data ∂(sub)νu = 0 on the boundary of the ball. We prove that u can be ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications of the Korean Mathematical Society 2001, Vol.16 (3), p.427-436
1. Verfasser: Yun, Ki-Hyun
Format: Artikel
Sprache:kor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 436
container_issue 3
container_start_page 427
container_title Communications of the Korean Mathematical Society
container_volume 16
creator Yun, Ki-Hyun
description It is the purpose of this paper to study the reflection of solutions of Helmholtz equation with Neumann boundary data. In detail let u be a solution of Helmholtz equation in the exterior of a ball in R$^3$ with exterior Neumann data ∂(sub)νu = 0 on the boundary of the ball. We prove that u can be extended to R$^3$ except the center of the ball. As a corollary, we prove that a sound hard ball can be identified by the scattering amplitude corresponding to a single incident direction and as single frequency.
format Article
fullrecord <record><control><sourceid>kisti</sourceid><recordid>TN_cdi_kisti_ndsl_JAKO200111920736257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JAKO200111920736257</sourcerecordid><originalsourceid>FETCH-kisti_ndsl_JAKO2001119207362573</originalsourceid><addsrcrecordid>eNpjYuA0MjI20TU2MDJhYeA0NDIy1TU0NzPmYOAtLs5MMjA2MzK3MDUw4GRwCfFwVQhydfNxdQ7x9PdT8HdTCPb3CQWxg0EcD1cfXw9_n5AoBdfAUEewEkc_FyBWcAwI8PF0BgvxMLCmJeYUp_JCaW4GVTfXEGcP3ezM4pLM-LyU4px4L0dvfyMDA0NDQ0sjA3OgA0zNjYlVBwDJHzO2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>THE REFLECTION OF SOLUTIONS OF HELMHOLTZ EQUATION AND AN APPLICATION</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yun, Ki-Hyun</creator><creatorcontrib>Yun, Ki-Hyun</creatorcontrib><description>It is the purpose of this paper to study the reflection of solutions of Helmholtz equation with Neumann boundary data. In detail let u be a solution of Helmholtz equation in the exterior of a ball in R$^3$ with exterior Neumann data ∂(sub)νu = 0 on the boundary of the ball. We prove that u can be extended to R$^3$ except the center of the ball. As a corollary, we prove that a sound hard ball can be identified by the scattering amplitude corresponding to a single incident direction and as single frequency.</description><identifier>ISSN: 1225-1763</identifier><identifier>EISSN: 2234-3024</identifier><language>kor</language><ispartof>Communications of the Korean Mathematical Society, 2001, Vol.16 (3), p.427-436</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024</link.rule.ids></links><search><creatorcontrib>Yun, Ki-Hyun</creatorcontrib><title>THE REFLECTION OF SOLUTIONS OF HELMHOLTZ EQUATION AND AN APPLICATION</title><title>Communications of the Korean Mathematical Society</title><addtitle>대한수학회논문집</addtitle><description>It is the purpose of this paper to study the reflection of solutions of Helmholtz equation with Neumann boundary data. In detail let u be a solution of Helmholtz equation in the exterior of a ball in R$^3$ with exterior Neumann data ∂(sub)νu = 0 on the boundary of the ball. We prove that u can be extended to R$^3$ except the center of the ball. As a corollary, we prove that a sound hard ball can be identified by the scattering amplitude corresponding to a single incident direction and as single frequency.</description><issn>1225-1763</issn><issn>2234-3024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>JDI</sourceid><recordid>eNpjYuA0MjI20TU2MDJhYeA0NDIy1TU0NzPmYOAtLs5MMjA2MzK3MDUw4GRwCfFwVQhydfNxdQ7x9PdT8HdTCPb3CQWxg0EcD1cfXw9_n5AoBdfAUEewEkc_FyBWcAwI8PF0BgvxMLCmJeYUp_JCaW4GVTfXEGcP3ezM4pLM-LyU4px4L0dvfyMDA0NDQ0sjA3OgA0zNjYlVBwDJHzO2</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Yun, Ki-Hyun</creator><scope>JDI</scope></search><sort><creationdate>2001</creationdate><title>THE REFLECTION OF SOLUTIONS OF HELMHOLTZ EQUATION AND AN APPLICATION</title><author>Yun, Ki-Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kisti_ndsl_JAKO2001119207362573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>kor</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yun, Ki-Hyun</creatorcontrib><collection>KoreaScience</collection><jtitle>Communications of the Korean Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yun, Ki-Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE REFLECTION OF SOLUTIONS OF HELMHOLTZ EQUATION AND AN APPLICATION</atitle><jtitle>Communications of the Korean Mathematical Society</jtitle><addtitle>대한수학회논문집</addtitle><date>2001</date><risdate>2001</risdate><volume>16</volume><issue>3</issue><spage>427</spage><epage>436</epage><pages>427-436</pages><issn>1225-1763</issn><eissn>2234-3024</eissn><abstract>It is the purpose of this paper to study the reflection of solutions of Helmholtz equation with Neumann boundary data. In detail let u be a solution of Helmholtz equation in the exterior of a ball in R$^3$ with exterior Neumann data ∂(sub)νu = 0 on the boundary of the ball. We prove that u can be extended to R$^3$ except the center of the ball. As a corollary, we prove that a sound hard ball can be identified by the scattering amplitude corresponding to a single incident direction and as single frequency.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1225-1763
ispartof Communications of the Korean Mathematical Society, 2001, Vol.16 (3), p.427-436
issn 1225-1763
2234-3024
language kor
recordid cdi_kisti_ndsl_JAKO200111920736257
source EZB-FREE-00999 freely available EZB journals
title THE REFLECTION OF SOLUTIONS OF HELMHOLTZ EQUATION AND AN APPLICATION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A04%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kisti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20REFLECTION%20OF%20SOLUTIONS%20OF%20HELMHOLTZ%20EQUATION%20AND%20AN%20APPLICATION&rft.jtitle=Communications%20of%20the%20Korean%20Mathematical%20Society&rft.au=Yun,%20Ki-Hyun&rft.date=2001&rft.volume=16&rft.issue=3&rft.spage=427&rft.epage=436&rft.pages=427-436&rft.issn=1225-1763&rft.eissn=2234-3024&rft_id=info:doi/&rft_dat=%3Ckisti%3EJAKO200111920736257%3C/kisti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true