Study on Direct Dipolar Effect of Neighboring Protons in Proton Coupled $^{13}C$ Relaxation Experiment
The dipolar effect of neighboring protons that are not directly bonded to the carbon of interest on coupled carbon-13 relaxation in a simple organic molecule has been studied by comparing the relaxation behaviors of labeled carbon-13 in $Br13CH_2COOH$ with those in $BrCH_213COOH.$ Various pulse sequ...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Korean Chemical Society 2000, Vol.21 (11), p.1077-1084 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | kor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The dipolar effect of neighboring protons that are not directly bonded to the carbon of interest on coupled carbon-13 relaxation in a simple organic molecule has been studied by comparing the relaxation behaviors of labeled carbon-13 in $Br13CH_2COOH$ with those in $BrCH_213COOH.$ Various pulse sequences, such as coupled inversion recovery pulse sequence, J-negative and J-positive pulse sequence, and nonselective and selective proton ${\pi}pulse$ sequence, were employed to perform the required coupled spin relaxation experiments. To gain information on various spectral densities, including that of dipolar-CSA cross correlation, the experiments were performed on two different spectrometers, operating, respectively, at 50.31 and 125.51MHz for 13C. The magnitude of CH dipolar spectral densities for $BrCH_213COOH$ was found to be about 8% of those for $Br13CH_2COOH$, which means the effect due to the protons not directly bonded to the carbon of interest is small but not completely negligible. |
---|---|
ISSN: | 0253-2964 1229-5949 |